Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

ЛЕСОСИБИРСКИЙ ПЕДАГОГИЧЕСКИЙ ИНСТИТУТфилиал Сибирского федерального университета

Высшей математики, информатики и естествознания кафедра

> **УТВЕРЖДАЮ** Заведующий кафедрой Ашова Л. Н. Храмова 2022г.

БАКАЛАВРСКАЯ РАБОТА

44.03.05 Педагогическое образование (с двумя профилями подготовки) код и наименование направления

МЕТОДИКА ИЗУЧЕНИЯ ТЕМЫ «ЛОГАРИФМИЧЕСКИЕ УРАВНЕНИЯ И НЕРАВЕНСТВА» В КУРСЕ МАТЕМАТИКИ СРЕДНЕЙ ШКОЛЫ

Руководитель

10.06,22 дочени, напр. Анучно наук Е. Н. Яковлева инициалы, фамиль

инициалы, фамилия

Студент

10.06.22

Д. В. Лазарева инициалы, фамилия

Нормоконтролер

5 10.06,22

Е. Н. Яковлева инициалы, фамилия

РЕФЕРАТ

Выпускная квалификационная работа по теме «Методика изучения темы «Логарифмические уравнения и неравенства» в курсе математики средней школы» содержит 60 страниц текстового документа, 44 использованных источника, 3 приложения.

ЛОГАРИФМ, ЛОГАРИФМИЧЕСКИЕ УРАВНЕНИЯ, ЛОГАРИФМИЧЕСКИЕ НЕРАВЕНСТВА, МЕТОДИКА ОБУЧЕНИЯ МАТЕМАТИКЕ.

Актуальность исследования определяется тем, что данная тема присутствует в материалах ЕГЭ (для базового и профильного уровней), но у большинства учащихся возникают проблемы с изучением данной темы.

Объект исследования: процесс обучения математике в средней школе.

Предмет исследования: методика изучения логарифмических уравнений и неравенств.

Цель исследования: рассмотреть методику изучения темы «Логарифмические уравнения и неравенства».

Согласно цели исследования определены следующие задачи:

- 1) Рассмотреть основные понятия и виды логарифмических уравнений и неравенств и методы их решения;
- 2) Рассмотреть основные ошибки при решении логарифмических уравнений и неравенств и разработать методические рекомендации по их устранению;
- 3) Рассмотреть логарифмические уравнения и неравенства в материалах ЕГЭ и разработать методический материал по данной теме (буклеты).

В результате были рассмотрены основные понятия и методы решения логарифмических уравнений и неравенств, типичные ошибки при их решении, анализ школьных учебников по данной теме. Разработаны методические материалы по теме исследования для подготовки к ЕГЭ.

СОДЕРЖАНИЕ

Введение
1 Теоретические аспекты изучения темы «Логарифмические уравнения и неравенства»
1.1 Виды и методы решения логарифмических уравнений7
1.2 Виды и методы решения логарифмических неравенств18
2 Методические особенности изучения логарифмических уравнений и неравенств
2.1 Анализ школьных учебников по теме «Логарифмические уравнения и неравенства»25
2.2 Основные ошибки учащихся при решении логарифмических уравнений и неравенств и методические рекомендации по их устранению
2.3 Логарифмические уравнения и неравенства в материалах ЕГЭ37
Заключение
Список использованных источников
Приложение А. Буклет для учащихся по теме «Логарифмические уравнения»55
Приложение Б. Буклет для учащихся по теме «Логарифмические неравенства»
Приложение В. Основные ошибки при решении логарифмических уравнений и неравенств59

ВВЕДЕНИЕ

При освоении любой современной профессии требуются определенные знания математики. Математические знания стали важной частью общей культуры.

Успешная самореализация в жизни требует тщательной математической подготовки. Место и роль математики в современной науке и обществе, а также ценность математических знаний определяют цель математического образования.

Математика как наука всегда направлена на то, чтобы продвигать и улучшать жизнь человека, узнавать больше об окружающем мире, изучать и понимать его закономерности и секреты. Теоретики и практики, занимающиеся математикой, создали математическую модель явлений, в которой выделены наиболее важные характеристики явлений, наблюдаемых в природе, путем введения математических зависимостей и введения различных чисел.

Одна содержательных алгебры ИЗ тем ШКОЛЬНОГО курса логарифмические уравнения и неравенства. Они содержат множество интересных методов решения, развивающих рациональное необычных, мышление, память и познавательный интерес к математике. Данная тема присутствует в материалах ЕГЭ (для базового и профильного уровней), но у большинства учащихся возникают проблемы с изучением данной темы. Это позволяет говорить об актуальности темы выпускной квалификационной работы.

Объект исследования: процесс обучения математике в средней школе.

Предмет исследования: методика изучения логарифмических уравнений и неравенств.

Цель исследования: рассмотреть методику изучения темы «Логарифмические уравнения и неравенства».

Согласно цели исследования определены следующие задачи:

- 1) Рассмотреть основные понятия и виды логарифмических уравнений и неравенств и методы их решения;
- 2) Рассмотреть основные ошибки при решении логарифмических уравнений и неравенств и разработать методические рекомендации по их устранению;
- 3) Рассмотреть логарифмические уравнения и неравенства в материалах ЕГЭ и разработать методический материал по данной теме (буклеты).

Методологической основой исследования являются работы С. А. Барвенова, Б. П. Гейдмана, В. А. Далингера, А. М. Захарова и др.

Этапы исследования:

1 этап (ноябрь 2022 – апрель 2022) – анализ научных публикаций и основных концепций по теме исследования, отработка понятийного аппарата исследования, постановка цели, определение объекта, предмета и задач исследования, выбор методов исследования.

2 этап (март 2022 – апрель 2022) – разработка методических рекомендаций по устранению основных ошибок при решении логарифмических уравнения и неравенств.

3 этап (май 2022) – разработка методического материала (буклетов) по теме «Логарифмические уравнения и неравенства».

Практическая значимость работы заключается в возможности использования методического материала учителем и учениками средней школы при подготовке к ЕГЭ, в которых кратко изложен теоретический материал и приведены примеры решения логарифмических уравнений и неравенств.

В работе проанализированы основные типичные ошибки при решении логарифмических уравнений и неравенств и разработаны методические рекомендации по их устранению.

По результатам исследования была опубликована статья на тему «Методика изучения темы «Логарифмические уравнения и неравенства» в курсе

математики средней школы» на сайте Инфоурок.

Структура работы – выпускная квалификационная работа состоит из введения, двух глав, заключения, 44 использованных источника и трех приложений.

1 Теоретические аспекты изучения темы «Логарифмические уравнения и неравенства»

1.1 Виды и методы решения логарифмических уравнений

В школьной программе математики, как известно, уравнение — это равенство, содержащее неизвестную переменную, значение которой должно быть найдено. Корень уравнения — это значение неизвестного, при котором это уравнение обращается в верное числовое равенство.

Изучение логарифмических уравнений начинается с понятия логарифма. Свое начало логарифмы берут с античных времен. Работы индийского математика Вирасена послужили первоисточником для их создания.

В VIII веке индийский математик Вирасена при исследовании степенных зависимостей, опубликовал таблицу целочисленных показателей для оснований 2, 3, 4. Эта работа в дальнейшем послужила первоисточником для создания таблицы логарифмов [15]. Более глубокое изучение они получили позже в Европе. Связано это с ростом потребности в сложных расчетах, так как прогрессировали математические и астрономические науки. Далее развитием теории логарифмов занимались шотландский математик Джон Непер, английский математик Генри Бригс, русский математик Леонтий Ф. Магницкий, петербургский академик Леонард Эйлер и другие.

Логарифмом положительного числа b по положительному и отличному от 1 основанию a называется показатель степени, в которую надо возвести число a, чтобы получить число b [25].

Перечислим некоторые основные свойства логарифма:

1) При любом $a > 0 \ (a \ne 1)$ выполнены равенства:

$$\log_a 1 = 0, \tag{1.1}$$

$$\log_a a = 1. \tag{1.2}$$

2) Если x > 0, y > 0, a > 0 и $a \ne 1$, то выполняется равенство

$$\log_a(x \cdot y) = \log_a x + \log_a y. \tag{1.3}$$

Например, $\log_4 2 + \log_4 32 = \log_4 (2 \cdot 32) = \log_4 64 = 3$.

3) Если x > 0, y > 0, a > 0 и $a \ne 1$, то выполняется равенство

$$\log_a \frac{x}{y} = \log_a x - \log_a y. \tag{1.4}$$

Например, $\log_3 486 - \log_3 6 = \log_3 \frac{486}{6} = \log_3 81 = 4$.

4) Если a>0, $a\neq 1$ и b>0, то для любого $\beta\neq 0$ выполняется равенство

$$\log_{a^{\beta}} b = \frac{1}{\beta} \log_a b. \tag{1.5}$$

Например, $\log_{27} 3 = \log_{3^3} 3 = \frac{1}{3} \log_3 3 = \frac{1}{3} \cdot 1 = \frac{1}{3}$.

5) Если x > 0, a > 0 и $a \ne 1$, то для любого $\beta \in R$ выполняется равенство

$$\log_a b^r = r \log_a b. \tag{1.6}$$

Например, $\log_5 625 = \log_5 5^4 = 4 \cdot \log_5 5 = 4 \cdot 1 = 4$.

6) Если a > 0, $a \ne 1$, b > 0, c > 0 и $c \ne 1$ то выполняется равенство

$$\log_a b = \frac{\log_c b}{\log_c a}. (1.7)$$

Например, выполним переход к новому основанию 2 логарифма $\log_4 8$: $\log_4 8 = \frac{\log_2 8}{\log_2 4} = \frac{3}{2} = 1,5.$

Также в примерах можно встретить логарифм вида $\lg x$ и $\ln x$. Логарифм $\lg x$ называется десятичным логарифмов. Это логарифм, основание которого равно 10. Данный логарифм обозначается как: $\log_{10} x = \lg x$.

Десятичные логарифмы широко применяются в приближенных вычислениях; в связи с этим имеются подробные и весьма точные таблицы десятичных логарифмов. Они применяются для упрощения вычислений.

Например,
$$\lg 0.001 = -3$$
, $\lg 10000 = 4$.

Для любого положительного числа целая часть десятичного логарифма называется характеристикой, а дробная часть - мантиссой этого логарифма [36].

Натуральным логарифмом числа называют логарифм этого числа по основанию e, где e — иррациональное константа, приблизительно равная числу 2,72. При этом пишут $\ln x$ вместо $\log_e x$ [1].

Логарифмической функцией называют функцию вида $y = \log_a x$, где $a > 0, a \neq 1$.

Логарифмическая функция, график которой представлен на рисунке 1, обладает следующими свойствами:

- а) Свойства функции $y = log_a x$, a > 1:
- $1) D(f) = (0; +\infty);$
- 2) Не является ни четной, ни нечетной;
- 3) Возрастает на (0; +∞);
- 4) Не ограничена сверху, не ограничена снизу;
- 5) Не имеет ни наибольшего, ни наименьшего значения;
- 6) Непрерывна;
- 7) $F(f) = (-\infty; +\infty);$
- 8) Выпукла вверх.
- b) Свойства функции $y = log_a x$, 0 < a < 1:
- $1) D(f) = (0; +\infty);$
- 2) Не является ни четной, ни нечетной;

- 3) Убывает на (0; +∞);
- 4) Не ограничена сверху, не ограничена снизу;
- 5) Не имеет ни наибольшего, ни наименьшего значения;
- 6) Непрерывна;
- 7) $F(f) = (-\infty; +\infty);$
- 8) Выпукла вниз.

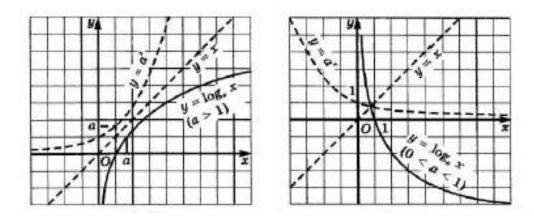


Рисунок 1 – Графики функций $y = log_a x$ и $y = a^x$

Логарифмическим уравнением называется уравнение, в котором неизвестная находится под знаком логарифма или в основании логарифма (или и то и другое одновременно) [11].

Существует следующие виды логарифмических уравнений:

1. Простейшие уравнения

Уравнение вида

$$\log_a x = b$$
, где $a > 0$, $a \neq 1$, (1.8)

называют простейшим логарифмическим уравнением.

Поскольку графики и пересекаются в одной точке (рис. 2), то простейшее логарифмическое уравнение имеет единственный корень при любом b.

Этот корень можно найти с помощью понятия логарифма. Имеем: $x=a^b$ [27].

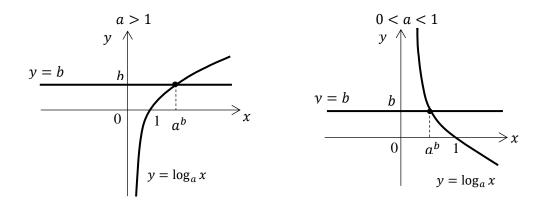


Рисунок 2 – Графическое решение уравнения $\log_a x = b$

Возможны следующие случаи решения простейшего логарифмического уравнения $\log_x a = b$ при a > 0:

- 1) При $a \neq 1$ и $b \neq 0$ имеют единственный корень $x = a^{1/b}$;
- 2) При a=1 и b=0 имеют решением любое положительное, отличное от 1, число;
 - 3) При a = 1 и $b \neq 0$ корней нет;
 - 4) При $a \ne 1$ и b = 0 корней нет.

Возможны следующие случаи решения простейшего логарифмического уравнения $\log_x a = b$ при a > 0:

2. Простейшие с переменной в основании логарифма или под знаком логарифма

$$\log_a f(x) = \log_a g(x),$$

$$\log_{f(x)} a = \log_{g(x)} a.$$

3. Простейшие с переменной и в основании, и под логарифмом

$$\log_{g(x)} f(x) = b.$$

4. Уравнения вида

$$\log_{f(x)} g(x) = \log_{f(x)} h(x),$$

$$\log_{g(x)} f(x) = \log_{p(x)} f(x).$$

Решение логарифмического уравнения означает нахождение всех его корней или доказательство того, что их нет. При решении логарифмических уравнений используют такие преобразования, которые не приводят к потере корней, но могут привести к появлению посторонних корней. Поэтому проверка всех полученных корней поможет понять правильность преобразований, произведенных при решении логарифмических уравнений.

При решении многих логарифмических уравнений применяют следующую теорему и следствие:

Теорема 1. Пусть a>0, $a\neq 1$. Если $\log_a x_1=\log_a x_2$, то $x_1=x_2$, и наоборот, если $x_1>0$, $x_2>0$ и $x_1=x_2$, то $\log_a x_1=\log_a x_2$ [27].

Два уравнения с одной переменной f(x) = g(x) и p(x) = h(x) называют равносильными, если множества их корней совпадают, то есть они имеют одинаковые корни или оба уравнения не имеют корней.

Следствие. Пусть a>0, $a\neq 1$. Уравнение вида $\log_a f(x)=\log_a g(x)$ равносильно любой из систем

$$\begin{cases}
f(x) = g(x), \\
f(x) > 0
\end{cases}$$

или

$$\begin{cases}
f(x) = g(x), \\
g(x) > 0.
\end{cases}$$

Выбор соответствующей системы, как правило, связан с тем, какое из неравенств f(x) > 0 или g(x) > 0 решить легче [27].

Пример 1. Решите уравнение $\log_3(2x - 1) + \log_3(x - 2) = 3$.

Решение. Найдем область определения:

$$\begin{cases} 2x - 1 > 0, \\ x - 2 > 0; \end{cases} \Rightarrow \begin{cases} 2x > 1, \\ x > 2; \end{cases} \Rightarrow \begin{cases} x > 0.5, \\ x > 2; \end{cases} \Rightarrow x > 2.$$

Преобразуем уравнение следующим образом:

$$\log_3((2x-1)(x-2)) = 3;$$

Отсюда $(2x-1)(x-2) = 3^3 \implies 2x^2 - 5x - 25 = 0.$

Решим уравнение $2x^2 - 5x - 25 = 0$.

$$D = b^2 - 4ac = (-5)^2 - 4 \cdot 2 \cdot (-25) = 25 + 200 = 225, \quad \sqrt{D} = 15.$$

$$x_1 = \frac{5+15}{2 \cdot 2} = \frac{20}{4} = 5;$$

 $x_2 = \frac{5-15}{2 \cdot 2} = \frac{-10}{4} = -\frac{5}{2}$ (не является корнем данного уравнения, так как не входит в область его определения).

Ответ: x = 5.

При решении логарифмических уравнений используются следующие методы:

1. Метод решения уравнений, основанный на определении логарифма

Данным методом решаются простейшие уравнения вида $\log_a x = b$. Суть метода заключается в использование самого определения логарифма в решении.

Пример 2. Решить уравнение $log_3(x + 1) = 3$.

Решение. По определению логарифма: $x + 1 = 3^3$, x + 1 = 27.

Из полученного уравнения находим значение x.

$$x = 27 - 1,$$
$$x = 26.$$

Проверим правильность решения, подставив полученное значение в исходное уравнение: $\log_3(26+1) = \log_3 27 = 3$.

Ответ: x = 26.

Подборка заданий:

- Решите уравнение $\log_3(2x + 3) = 3$ (Ответ: x = 12).
- Решите уравнение $-2 = \lg x$ (Ответ: x = 0.01).
- Решите уравнение $\ln 5x = 0$ (Ответ: x = 0,2).
- 2. Решение уравнений с помощью потенцирования

Чтобы решить уравнение, необходимо с помощью формул привести уравнение к виду $\log_a f(x) = \log_a g(x)$. При a > 0 и $a \neq 1$ данное уравнение равносильно системе:

$$\begin{cases} f(x) > 0, \\ g(x) > 0, \\ f(x) = g(x). \end{cases}$$

Для решения уравнения $\log_a f(x) = \log_a g(x)$ при $a>0, a\neq 1$ нужно:

- 1) Решить уравнение f(x) = g(x);
- 2) Из найденных корней отобрать те, которые удовлетворяют неравенству f(x) > 0 (или, что то же самое, неравенству g(x) > 0; обычно используют более простое из этих неравенств), а остальные корни отбросить, так как они являются для данного уравнения посторонними [6].

Пример 3. Решите уравнение $\log_5(x+3) - 1 = \log_5(x+1)$.

Решение. Найдем область определения:

$$\begin{cases} x+1>0, \\ x+3>0; \Longrightarrow \begin{cases} x>-1, \\ x>-3; \end{cases} \implies x>-1.$$

Решаем уравнение, используя формулы (1.2) и (1.4) получаем:

$$\log_5(x+3) - \log_5 5 = \log_5(x+1),$$

Применим свойство (1.4):

$$\log_5 \frac{(x+3)}{5} = \log_5 (x+1)$$
, т.е. $\frac{(x+3)}{5} = (x+1)$, или $x+3 = 5x+5$.

Откуда: x - 5x = 5 - 3,

$$-4 x = 2, x = -\frac{2}{4} = -0.5.$$

Данное значение x удовлетворяет ОД3.

Ответ: x = -0.5.

Подборка заданий:

- -- Решите уравнение $\log_5 2x = \log_5 (1 x^2)$ (Ответ: x = 1).
- -- Решите уравнение $\lg 2x^2 = \lg(3+x)$ (Ответ: $x_1 = -1, x_2 = 1\frac{1}{2}$).
- -- Решите уравнение $1 + \log_2 2x = \log_2(x^2 + 3)$ (Ответ: $x_1 = 3$, $x_2 = 1$).
- 3. Замена переменных

Замена переменных — часто используемый способ равносильных преобразований уравнений. Если переменная входит в уравнение (неравенство или тождество) несколько раз в одном и том же виде, то удобно обозначить соответствующее выражение одной буквенной переменной (новая переменная).

Пример 4. Решить уравнение $\log_2^2 x + 2\log_2 x - 15 = 0$.

Решение. Пусть $z = \log_2 x$, тогда уравнение примет вид

$$z^2 + 2z - 15 = 0.$$

По теореме Виета находим корни: $z_1 = 3$ и $z_2 = -5$.

Если $z_1 = 3$, то $\log_2 x = 3 \Longrightarrow x_1 = 8$;

Если
$$z_2 = -5$$
, то $\log_2 x = -5 \Longrightarrow x_2 = \frac{1}{32}$.

Otbet: $x_1 = 8$; $x_2 = \frac{1}{32}$.

Подборка заданий:

Решите уравнение $\log_2^2 x - \log_2 x = 6$ (Ответ: $x_1 = 8, x_2 = 0.25$).

Решите уравнение $\lg^2 x + \lg x + 1 = \frac{7}{\lg \frac{1}{10}}$ (Ответ: x = 100).

Решите уравнение $\log_5 x^{1-\log_5 x} = \log_5 0.04$ (Отве: $x_1 = 0.25$, $x_2 = 25$).

4. Логарифмирование

Известно, что если взять логарифм равных величин по одному и тому же основанию, то эти логарифмы тоже будут равными. Этот метод используют, когда уравнение содержит переменную и в основании, и в показателе степени.

Пример 5. Решите уравнение $x^{1-\log_5 x} = 0.04$.

Решение. Логарифмируем обе части уравнения по основанию 5, получим $\log_5 x^{1-\log_5 x} = \log_5 0,04$. Учтем свойства логарифма и тогда в левой части получим $(1-\log_5 x)\cdot\log_5 x$. Преобразуем и правую часть $\log_5 0,04 = \log_5 \frac{1}{25} = \log_5 \left(\frac{1}{5}\right)^2 = \log_5 5^{-2} = -2$. Тогда уравнение примет вид $(1-\log_5 x)\cdot\log_5 x = -2$.

Пусть $z = \log_5 x$, тогда

$$(1-z)z = -2$$
, $z-z^2+2=0$.

Корни данного уравнения равны $z_1 = -1$ и $z_2 = 2$.

Если
$$z_1=-1$$
, то $\log_5 x=-1$. Тогда $x_1=\frac{1}{5}$,

Если $z_2 = 2$, то $\log_5 x = 2$. Тогда $x_2 = 25$.

Otbet:
$$x_1 = \frac{1}{5}$$
, $x_2 = 25$.

Подборка заданий:

- Решите уравнение $x^{\log_2 x + 2} = 8$ (Ответ: $x_1 = \frac{1}{8}$, $x_2 = 2$).
- Решите уравнение $10^{\lg^2 x} + x^{\lg x} = 20$ (Ответ: $x_1 = 10$, $x_2 = 0.1$).
- Решите уравнение $x^{\log_7 x} = 64$ (Ответ: $x_1 = \frac{1}{4}$, $x_2 = 8$).
- 5. Приведение к одному основанию

В уравнениях могут встречаться логарифмы с разными основаниями. Метод заключается в том, чтобы привести логарифмы к одному основанию, используя свойства логарифма (1.5) и (1.7).

Пример 6. Решите уравнение $\log_2 x + \frac{1}{2} \log_2 x + \frac{1}{4} \log_2 x = 7$,

Решение. Приведем все логарифмы к основанию 2. По формуле перехода $\log_a b = \frac{\log_c b}{\log_a a}$ находим: $\log_4 x = \frac{\log_2 x}{\log_a 4} = \frac{\log_2 x}{2}$, аналогично $\log_{16} x = \frac{\log_2 x}{4}$.

Получаем уравнение: $\log_2 x + \frac{1}{2} \log_2 x + \frac{1}{4} \log_2 x = 7$,

$$(\frac{1}{4} + \frac{1}{2} + 1)\log_2 x = 7, \frac{7}{4}\log_2 x = 7,$$

$$\log_2 x = 7 \cdot \frac{4}{7} = 4, x = 2^4 = 16.$$

Ответ: x = 16.

Подборка заданий:

- Решите уравнение $\log_3 x - 6 \log_x 3 = 1$ (Ответ: $x_1 = \frac{1}{9}$, $x_2 = 27$).

- Решите уравнение $\log_3 x - \log_{\sqrt{3}} x + \log_{\frac{1}{3}} x = 5$ (Ответ: $x = 3^{-\frac{5}{2}}$).

- Решите уравнение $\log_{16} x + \log_4 x + \log_2 x = 7$ (Ответ: x = 16). Пример 7. Решите уравнение $\log_2 (3 \log_x 2 + \log_2^2 x) = 2$.

Решение. $\log_2(3\log_x 2 + \log_2^2 x) = 2$,

$$\log_2(3\log_x 2 + \log_2^2 x) = \log_2 4$$
, $3\log_x 2 + \log_2^2 x = 4$.

Приведем логарифмы к одному основанию: $\frac{3}{\log_2 2} + \log_2^2 x = 4$.

Проведем замену переменной: $t = \log_x 2$.

$$\frac{3}{t} + t^2 = 4$$
, $\frac{3+t^3-4t}{t} = 0$, $\frac{(t-1)(t^2+t-3)}{t} = 0$,

$$t - 1 = 0$$
, $t_1 = 1$,

$$t^2 + t - 3 = 0$$
: $\sqrt{D} = \sqrt{13}$, $t_2 = \frac{-1 - \sqrt{13}}{2}$; $t_3 = \frac{-1 + \sqrt{13}}{2}$.

Проведем обратную замену: $\log_x 2 = 1$, $x_1 = 2$.

$$\log_x 2 = \frac{-1+\sqrt{13}}{2}, \quad x_2 = 2^{\frac{-1+\sqrt{13}}{2}}.$$

Найдем аналогичным способом ОДЗ: $\begin{cases} x > 0, \\ 2^{-\sqrt{3}} < x < 2^{\sqrt{3}}. \end{cases}$

Otbet:
$$x_1 = 2$$
, $x_2 = 2^{\frac{-1+\sqrt{13}}{2}}$.

Таким образом, применение различных методов решения логарифмических уравнений зависит от вида уравнения. Основными методами решения логарифмических уравнений являются: решение уравнений, основанных на определении логарифма; потенцирование; логарифмирование; замена переменных, приведение к одному основанию. По каждому методу мы предлагаем описание метода, пример и задания для закрепления.

1.2 Виды и методы решения логарифмических неравенств

Рассмотрим теперь понятие логарифмического неравенства.

Логарифмическим неравенством называется неравенство, содержащее переменную под знаком логарифма и/или в основании логарифма.

На рисунке 3 представлены общие типы логарифмических неравенств и их методы решения.

Рисунок 3 – Типы и методы решения логарифмических неравенств

Пусть a — данное положительное, не равное 1 число, b — данное действительное число. Тогда неравенства

$$\log_a x > b, \quad \log_a x < b \tag{1.9}$$

называются простейшими логарифмическими неравенствами [27].

Данные неравенства (1.9) можно привести к следующему виду:

$$\log_a x > \log_a x_0, \quad \log_a x < \log_a x_0, \tag{1.10}$$

где $x_0 = a^b$.

При решении логарифмических неравенств используются похожие методы решения, как и у логарифмических уравнений, которые мы рассмотрели в параграфе 1.1. Но также используются специальные методы:

1. Решение неравенства вида

$$\log_a f(x) > \log_a g(x), \tag{1.11}$$

где $\begin{cases} a > 0, \\ a \neq 1, \end{cases}$ основно на следующих двух теоремах:

Теорема 1. Если a>1, то неравенство (1.11) равносильно системе

неравенств
$$\begin{cases} f(x) > 0, \\ g(x) > 0, \\ f(x) > g(x). \end{cases}$$

(f(x) > g(x)). Теорема 2. Если 0 < a < 1, то неравенство (1.11) равносильно системе

неравенств
$$\begin{cases} f(x) > 0, \\ g(x) > 0, \\ f(x) < g(x). \end{cases}$$

Пример 1. Решите неравенство $\lg(2x^2 + 4x + 10) > \lg(x^2 - 4x + 3)$.

Решение. Основание логарифма больше 1, поэтому в данном неравенстве применима теорема 1. В соответствие с ней получаем систему неравенств

$$\begin{cases} 2x^2 + 4x + 10 > 0, \\ x^2 - 4x + 3 > 0, \\ 2x^2 + 4x + 10 > x^2 - 4x + 3. \end{cases}$$

Опустив первое неравенство (как следствие второго и третьего неравенств) и выполнив упрощения в третьем неравенстве, получим систему

$$\begin{cases} x^2 - 4x + 3 > 0, \\ x^2 + 8x + 7 > 0, \end{cases}$$
 и далее
$$\begin{cases} (x - 1)(x - 3) > 0, \\ (x + 1)(x + 7) > 0, \end{cases}$$

откуда находим $x \in (-\infty; -7) \cup (-1; 1) \cup (3; \infty)$ – решение заданного неравенства.

2. Неравенства, содержащие логарифмы по переменному основанию

Рассмотрим неравенство $\log_{\varphi(x)} f(x) > \log_{\varphi(x)} g(x)$. Имеет смысл отдельно рассматривать те значения x, для которых $\varphi(x) > 1$, и те значения x, для которых $0 < \varphi(x) < 1$. В первом случае неравенство сводится к неравенству f(x) > g(x) (нужно также учесть, что g(x) > 0) Во втором случае неравенство сводится к неравенству f(x) < g(x) (нужно также учесть, что f(x) > 0). Таким образом, исходное неравенство равносильно совокупности двух систем неравенств:

$$\begin{cases} \{\varphi(x) > 1, \\ \{f(x) > g(x) > 0; \\ \{0 < \varphi(x) < 1, \\ 0 < f(x) < g(x). \end{cases}$$

При решении неравенства таким способом нет необходимости выписывать ОДЗ; все соответствующие неравенства уже учтены [31].

Пример 2. Решите неравенство $\log_{5x-4x^2}(4^x-2) < 0$.

Решение. Неравенство равносильно совокупности двух систем неравенств

еравенств
$$\begin{cases} \{5x - 4x^2 > 1, \\ 0 < 4^x - 2 < 1. \\ 0 < 5x - 4x^2 < 1, \\ 4^x > 2, \\ 4^x < 3; \\ 4x^2 - 5x < 0, \\ 4x^2 - 5x + 1 > 0, \\ 4^x < 3, \end{cases} \Leftrightarrow \begin{cases} \begin{cases} x \in \left(\frac{1}{4}; 1\right), \\ x > \frac{1}{2}, \\ x < \log_4 3, \\ x < \log_4 3, \\ x \in \left(0; \frac{5}{4}\right), \\ x \in \left(-\infty; \frac{1}{4}\right) \cup (1; +\infty), \\ x > \log_4 3. \end{cases}$$

$$\Leftrightarrow \begin{bmatrix} x \in \left(\frac{1}{2}; \log_4 3\right), \\ x \in \left(1; \frac{5}{4}\right). \end{bmatrix}$$

Otbet:
$$x \in \left(\frac{1}{2}; \log_4 3\right) \cup \left(1; \frac{5}{4}\right)$$
.

Существует некий общий алгоритм для решения логарифмических неравенств. Для начала необходимо найти область допустимых значений неравенства. Затем задача состоит в том, чтобы сначала логарифмическое неравенство привести к неравенству с одинаковыми основаниями логарифмов, а потом — с одинаковыми выражениями под логарифмами. Если сделать в таком неравенстве замену переменной (если требуется), то получится простое алгебраическое неравенство. Если решить получившееся неравенство и сделать обратную замену, то это приведет к совокупности простейших логарифмических неравенств, которые легко решить.

Особняком стоят неравенства, в которых встречаются только сумма и разность логарифмов и которые с помощью логарифмических тождеств прямо сворачиваются в один логарифм независимо от того, что под знаком логарифма изначально стоят самые разнообразные выражения с переменной. Основным подводным камнем при решении логарифмических неравенств является эквивалентность используемых преобразований. Необходимо всегда помнить, что логарифм определен при выполнении трех условий:

- выражение под логарифмом больше нуля;
- основание логарифма больше нуля;
- основание логарифма не равно единице [32].

Простейшее логарифмическое неравенство решается потенцированием с использованием монотонности логарифмической функции:

$$\log_a f(x) > b \iff f(x) > a^b \ (a > 1)$$

$$\log_a f(x) > b \iff 0 < f(x) < a^b \ (0 < a < 1).$$

Пример 3. Решите неравенство $\log_3 x > 2$.

Решение. Используя теорему, получаем:

$$\log_3 x > 2 \iff \begin{cases} x > 3^2, \\ x > 0 \end{cases} \iff \begin{cases} x > 9, \\ x > 0. \end{cases}$$

Основание логарифма больше единицы, а это значит, что знак неравенства сохраняется. Отсюда следует, что $x \in (9; +\infty)$.

Пример 4. Решите неравенство $\log_2(2x + 1) > 4$.

Решение. Используя теорему, получаем:

$$\begin{cases} 2x + 1 > 0, \\ 2x + 1 > 2^4; \end{cases} \iff \begin{cases} 2x > -1, \\ 2x > 16; \end{cases} \iff \begin{cases} x > -0.5, \\ x > 8; \end{cases} \iff x > 8.$$

Ответ: x > 8.

В заданиях ЕГЭ встречаются комбинации различных типов неравенств. Это делается с помощью суперпозиции функций. Так называется сложная функция, то есть функция, аргументом которой является другая функция («функция от функции»). Например, если обе части логарифмического неравенства использовать в качестве показателя показательной функции, то получим показательно-логарифмическое неравенство.

Решение показательно-логарифмического неравенства осуществляется в обратном порядке:

- решите внешнее (показательное) неравенство и в результате получите логарифмическое неравенство;
 - решите логарифмическое неравенство и получите ответ [32].

Пример 5. Решите неравенство
$$0.3^{\log_{\frac{1}{3}}\log_{3}\frac{3x+6}{x^{2}+2}} > 1.$$

Решение. Приводим к одинаковым основаниям степеней 0,3.

Приводим к одинаковым основаниям степеней, используя определение нулевой степени числа:

$$0.3^{\log_{\frac{1}{3}}\log_{3}\frac{3x+6}{x^{2}+2}} > 1 \iff 0.3^{\log_{\frac{1}{3}}\log_{3}\frac{3x+6}{x^{2}+2}} > 0.3^{0} \iff \log_{\frac{1}{3}}\log_{3}\frac{3x+6}{x^{2}+2} < 0.$$

(Использовали следующую теорему:

Теорема. Если 0 < a < 1, то неравенство $a^{f(x)} > a^{g(x)}$ равносильно неравенству f(x) < g(x).

$$\log_{\frac{1}{3}}\log_{3}\frac{3x+6}{x^{2}+2} < 0 \iff \begin{cases} \log_{3}\frac{3x+6}{x^{2}+2} > \left(\frac{1}{3}\right)^{0}, \\ \log_{3}\frac{3x+6}{x^{2}+2} > 0. \end{cases}$$

$$\Leftrightarrow \begin{cases} \log_3 \frac{3x+6}{x^2+2} > 1, \\ \log_3 \frac{3x+6}{x^2+2} > 0. \end{cases} \Leftrightarrow \log_3 \frac{3x+6}{x^2+2} > 1.$$

Решаем простое логарифмическое неравенство:

$$\log_3 \frac{3x+6}{x^2+2} > 1 \iff \begin{cases} \frac{3x+6}{x^2+2} > 3^1 \\ \frac{3x+6}{x^2+2} > 0. \end{cases} \Leftrightarrow \frac{3x+6}{x^2+2} > 3.$$

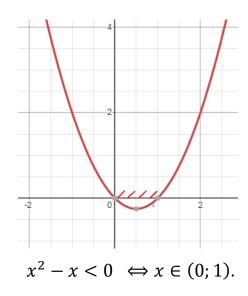
При основании логарифмов больше единицы логарифмическая функция монотонно возрастает, поэтому при потенцировании простейшего логарифмического неравенства знак неравенства не изменяется.

$$\frac{3x+6-3x^2-6}{x^2+2} > 0 \iff \frac{-3x^2+3x}{x^2+2} > 0 \iff \frac{x^2-x}{x^2+2} < 0.$$

Знаменатель $x^2 + 2 > 0$ всегда больше нуля и на него можно смело домножить обе части неравенства. При этом знак неравенства остается неизменным.

Решим квадратное неравенство $x^2 - x < 0$.

$$x^2 - x = 0 \iff x(x - 1) = 0 \iff x \in \begin{bmatrix} 1, \\ 0. \end{bmatrix}$$



Ответ: $x \in (0; 1)$.

Таким образом, при решении логарифмических уравнений и неравенств очень важно сохранять равносильность проводимых преобразований, которые позволяют получить уравнения или неравенства, равносильные данным. При решении логарифмических уравнений и неравенств определенного типа используются такие методы решения: решение уравнений, основанных на определении логарифма; потенцирование; логарифмирование; замена переменных; приведение к одному основанию и др.

2 Методические особенности изучения логарифмических уравнений и неравенств

2.1 Анализ школьных учебников по теме «Логарифмические уравнения и неравенства»

В этом разделе мы проанализируем школьные учебники, чтобы увидеть, в каком классе изучают логарифмические уравнения и неравенства, и как эта тема представлена в каждом учебнике, какие практические задания и методы решения авторы используют. Сравним учебники:

- Мордкович А. Г. Алгебра и начала математического анализа, 10 класс;
- Мерзляк А. Г. Алгебра и начало математического анализа, 11 класс;
- Колмогоров А. Н. Алгебра и начало математического анализа, 11 класс;
- Виленкин Н. Я. Алгебра и начало математического анализа, 11 класс.

В рассматриваемых учебниках исследуемой теме отводится разное место. В целом, содержание материалов по теме "Логарифмические уравнения и неравенства" на базовом и профильном уровнях остается практически неизменным, но глубина изучения материалов на этих уровнях значительно различается.

В учебнике А. Г. Мордковича Алгебра и начала математического анализа, 10 класс часть 1 данная тема занимает 7 главу «Показательная и логарифмическая функции» ПОД параграфами 44 Логарифмические § уравненияи § 45 Логарифмические неравенства. В этих разделах представлены два определения понятий «Логарифмическое уравнение» и «Логарифмические неравенства» и теоремы к ним. В § 44 говорится о существовании нескольких методических подходов к решению логарифмических уравнений и самым частым является подход, в котором в первую очередь находят ОДЗ (область допустимых значений) путем решения системы неравенств, а затем решают уравнение f(x) = g(x) и делают проверку получившихся корней. Еще один подход заключается в том, что сразу решают уравнение вида f(x) = g(x), не

находя его ОДЗ. Проверка корней происходит путем подстановки их в исходное уравнение. В данном учебнике отдают предпочтение таким методам решения:

- 1) Функционально-графический метод;
- 2) Метод потенцирования;
- 3) Метод введения новой переменной.

В учебнике А. Г. Мерзляка Алгебра и начало математического анализа, изучение темы начинается в 11 классе. Данная тема занимает 1 главу «Показательная и логарифмическая функции» под параграфами § 6 Логарифмические уравнения и § 7 Логарифмические неравенства.

В данной теме, аналогично учебнику А. Г. Мордковича, вводятся два определения «Логарифмическое уравнение» и «Логарифмические неравенства», используются такие же методические подходы и решения, но в этом учебнике, помимо теоремы, также даны следствия.

В учебнике А. Н. Колмогорова «Алгебра и начало математического анализа, 10 - 11 класс» данная тема занимает 4 главу «Показательная и логарифмическая функции». В данном учебнике тема не разделена на части как в учебниках А. Г. Мордковича и А. Г. Мерзляка и находится под параграфом § 10 под пунктом 39 Решение логарифмических уравнений и неравенств. Подход введения определения логарифмического уравнения здесь отличается, оно вводится сразу после темы «Логарифмическая функция» в кратком виде, без теорем с доказательством и следствий, основные теоретические положения иллюстрируются большим количеством конкретных примеров (повышенной сложности).

В учебнике Н. Я. Виленкина данная тема изучается также в 11 классе и не разделена между собой, как например, в учебниках А. Г. Мордковича и А. Г. Мерзляка. Данная тема рассматривается вместе во 2 главе «Показательная, логарифмическая и степенная функции» под вторым параграфом в пунктах:

- 3 Простейшие логарифмические уравнения и неравенства;
- 4 Решение логарифмических уравнений и неравенств.

Примерное количество часов, предполагаемое на изучение данной темы:

- А. Г. Мордкович, Алгебра и начала математического анализа, 10 класс 9 часов;
- А. Г. Мерзляк, Алгебра и начало математического анализа, 11 класс -10 часов;
- А. Н. Колмогоров, Алгебра и начало математического анализа, 11 класс 4 часа;
- Н. Я. Виленкин, Алгебра и начало математического анализа, 11 класс 8 часов.

Рассмотрим и сравним, как в данных учебниках предлагаются основные определения по теме (Таблица 1):

Таблица 1 — Основные определения по теме «Логарифмические уравнения и неравенства»

Автор	Название учебника	Определение
А. Г. Мерзляк	Алгебра и нач	ало Уравнения вида $\log_a x = b$, где $a > 0$,
	математического анали	иза, $a \neq 1$, называют простейшим
	11 класс	логарифмическим уравнением.
А. Г. Мордкович	Алгебра и нач	ала Логарифмическими уравнениями
	математического анали	иза, называют уравнения вида $\log_a f(x) =$
	10 класс	$\log_a g(x)$, где a – положительное число,
		отличное от 1, и уравнения, сводящиеся
		к этому виду.
		Логарифмическими неравенствами
		называют неравенства вида $\log_a f(x) >$
		$\log_a g(x)$, где a – положительное число,
		отличное от 1, и неравенства, сводящиеся
		к этому виду.
А. Н. Колмогоров	Алгебра и нач	ало Отсутствует.
	математического аналі	иза,
	11 класс	
Н. Я. Виленкин	Алгебра и нач	ало Простейшим логарифмическим
	математического аналі	иза, уравнением (т. е. уравнением,
	11 класс	содержащим неизвестное под знаком

Окончание таблицы 1

	логарифма) является $\log_a x = b$, где $a >$
	$0, a \neq 1.$

Также рассмотрим практические задания, предлагаемые разными авторами в школьных учебниках.

Отдельный задачник имеет только учебник А. Г. Мордковича, в остальных задания находят в самих учебниках. В задачнике предлагаются систему упражнения различного уровня сложности. Также есть специальный раздел. В раздел «Дополнительные задачи» включены задания с нестандартными формулировками, идеи которых навеяны материалами ЕГЭ по математике [26].

В учебнике А. Г. Мерзляка содержаться различного типа упражнения, которые включает от простых задач до высокой сложности задач. Также к учебнику А. Г. Мерзляка прилагается сборник задач и заданий для тематического оценивания. Сборник состоит из двух частей. Первая содержит два однотипных варианта тренировочных упражнений. Во второй части содержатся два варианта для тематического оценивания учебных достижений учащихся.

В учебнике А. Н. Колмогорова содержится мало многоуровневых задач, система упражнений представлена заданиями двух видов сложности. Первый вид включает простые задачи, второй – задачи чуть сложнее. Есть такие разделы с заданиями на повторение и на задачи с повышенной сложностью. Также наименьшее количество упражнений содержал учебник Н. Я. Виленкина. Хоть в учебнике и указаны типовые задачи для подготовки учащихся к Единому государственному экзамену, предложены алгоритмы их выполнения, но после каждого параграфа в заданиях для самоконтроля содержатся только по два упражнения и нет разделения по уровню сложности.

Можно сделать вывод, что в рассмотренных школьных учебниках введение основных понятий, количество часов и методы решения логарифмических уравнений и неравенств в данных учебниках схожи между собой. Отличается только учебник А. Н. Колмогорова, где определение отсутствует и сразу начинается с решения данных уравнений (неравенств) и

количество часов, отводимое на изучение наименьшее. Для подготовки к ЕГЭ по глубине материала и разноуровневых заданий можно выделить учебники А. Г. Мерзляка и А. Г. Мордковича.

2.2 Основные ошибки учащихся при решении логарифмических уравнений и неравенств и методические рекомендации по их устранению

В. А. Далингер утверждает, что «Ошибки, допускаемые обучающимися при решении уравнений и неравенств, самые разнообразные: от неверного оформления решения до ошибок логического характера...» [11, с. 210].

Существуют следующие типичные ошибки, которые могут возникнуть при решении заданий на тему «Логарифмические уравнения и неравенства»:

1. При решении уравнений и неравенств школьники пропускают дополнительные пояснения в используемых ими преобразованиях и при этом нарушают равносильность. Данная ошибка очень распространена. Она приводит к тому, что в решении теряются корни или появляются лишние. Они возникают, когда обе части уравнения делят на какое-либо выражение, которое содержит неизвестное, при этом могут быть потеряны корни, которые данные выражения обращают в ноль. Также, когда в процессе решения выполняются нетождественные преобразования, которое приводит к уменьшению области допустимых значений неизвестного, а это значит, что некоторые корни будут потеряны. Появление же лишних корней может в случаях, когда обе части дробного уравнения либо умножают, либо сокращают на выражение, содержащее неизвестную величину. Рассмотрим на примере:

Пример 1. Решите уравнение:

$$\log_3(5 - x) = 3 - \log_3(-1 - x).$$

Данное уравнение учащиеся очень часто решают следующим образом:

$$\log_3(5 - x) = 3 - \log_3(-1 - x),$$

$$\log_3(5 - x) + \log_3(-1 - x) = 3,$$

$$\log_3((5-x)(-1-x)) = 3,$$

$$(5-x)(-1-x) = 3^3,$$

$$x^2 - 4x - 32 = 0,$$

$$x_{1,2} = \frac{4 \pm \sqrt{16 + 128}}{2} = \frac{4 \pm 12}{2}.$$

$$x_1 = -4; \quad x_2 = 8 [12].$$

В данном решении как раз показан случай, когда учащиеся не проводят дополнительных рассуждений, а сразу записывает получившиеся корни без проверки. Но если провести проверку, то обнаружиться, что $x_2 = 8$ не является корнем, потому что обе части теряют свой смысл при подстановке. И в итоге $x_1 = -4$ является единственным корнем данного уравнения.

Рекомендации по устранению ошибки.

- 1. Повторить понятия равносильности уравнений и неравенств и их следствий.
- 2. Записывать и приводить все дополнительные рассуждения (находить ОДЗ).
- 3. Контролировать учащихся, чтобы они не сокращали решение и делали проверку корней.
- 4. Рассмотреть ситуации, приводящие к потере или появлению новых корней.

Пример 2. Решить уравнение $\log_3(x-2) = -\log_3(x+6) + 2$.

Решение. Для начала найдем ОДЗ:

$$\begin{cases} x - 2 > 0, \\ x + 6 > 0, \end{cases} \rightarrow \begin{cases} x > 2, \\ x > -6, \end{cases} \rightarrow x > 2.$$

Перенесем логарифмы в одну сторону и, применяя свойство логарифма (1.3), преобразуем уравнение:

$$\log_3(x-2) + \log_3(x+6) = 2,$$

$$\log_3((x-2) \cdot (x+6)) = 2,$$

$$\log_3(x^2 + 4x - 12) = 2.$$

Используем определение логарифма:

$$\log_3(x^2 + 4x - 12) = \log_3 9$$

Потенцируем и получаем $x^2 + 4x - 12 = 9$,

$$x^{2} + 4x - 21 = 0,$$

$$D = b^{2} - 4ac = 16 + 84 = 100, \quad \sqrt{D} = 10.$$

$$x_{1} = \frac{-b - \sqrt{D}}{2 \cdot a} = \frac{-4 - 10}{2 \cdot 1} = \frac{-14}{2} = -7;$$

$$x_{2} = \frac{-b + \sqrt{D}}{2 \cdot a} = \frac{-4 + 10}{2 \cdot 1} = \frac{6}{2} = 3.$$

Корень x_1 не соответствует ОДЗ, поэтому x_2 будет единственным корнем. Ответ: $x_2 = 3$.

2. Невнимание к области определения может привести к невозможности решения уравнения (неравенства).

Многие учащиеся не предают значения ОДЗ, хотя в ряде случаев она необходима для нахождения решения.

Пример 3. Решим уравнение $\log_2(2-x)+\sqrt{x}+\sqrt{x^2-2x}=1$ [12]. Найдем область определения:

$$\begin{cases} 2 - x > 0, \\ x \ge 0, \\ x^2 - 2x \ge 0; \end{cases} \begin{cases} x < 2, \\ x \ge 0, \\ x \le 0, \\ x \ge 2. \end{cases}$$

Откуда имеем x = 0. Подстановкой проверим является ли данное число корнем уравнения.

$$\log_2 2 + \sqrt{0} + \sqrt{0^2 - 2 \cdot 0} = 1$$
, 1=1.

Otbet: x = 0.

Рекомендации по устранению ошибки.

- 1. Необходимо повторить понятие ОДЗ, правила решения систем уравнений (неравенств) и нахождения ОДЗ.
- 2. Предложить подборку заданий, которые нельзя решить без использования ОДЗ, например:
 - Решите неравенство $2^{\sqrt{10-x}} (x-9) \lg(x-9) > 0$;
 - Решите уравнение $1 + \sqrt{x + 2 \lg a} = \sqrt{x 1}$.

3. Проблема учащихся еще заключается в том, что они не владеют данным материалом по теме: плохо знают определения, понятия, алгоритмы и т. д.

Пример 4. Решим уравнение $\log_7(x-6) = 2$.

$$\log_7(x - 6) = \log_7 128,$$

 $x - 6 = 128,$
 $x = 134.$

В данном примере допущена ошибка в незнании определения логарифма и в итоге это привело к неправильному ответу. Ведь $\log_7 128$ не равняется 2, $\log_7 128 \approx 2,493$, и без помочи калькулятора данное значение сложно вычислить.

Рекомендации по устранению ошибки. Данную ошибку можно ликвидировать путем спланированного и систематичного повторения учителем основных ЗУН учащихся.

- 1) Необходимо повторить:
- определения логарифма, логарифмического уравнения и неравенства;
- основных свойств логарифма;
- виды логарифмических уравнений и неравенств.

Пример 5. Решить уравнение $\log_4 x - 2 \cdot \log_{\frac{1}{4}} x = 3$.

Решение. Данное уравнение преобразуем, используя свойства логарифма (1.5, 1.6) к вычитаемому:

$$\log_4 x - 2 \cdot \log_{4^{-1}} x = 3,$$

$$\log_4 x - \frac{2}{-1} \cdot \log_4 x = 3,$$

$$\log_4 x + 2 \cdot \log_4 x = 3,$$

$$\log_4 x + \log_4 x^2 = 3.$$

Используем сначала свойство (1.3):

$$\log_4 x^3 = 3.$$

Затем определение логарифма:

$$\log_4 x^3 = \log_4 64,$$
$$x^3 = 64,$$
$$32$$

$$x = 4$$
.

Проведем проверку: $\log_4 4 - 2 \log_{\frac{1}{4}} 4 = 1 - 2 \cdot (-1) = 3$.

Ответ: x = 4.

- 2) Повторить методы решения логарифмических уравнений и неравенств: метод решения уравнений и неравенств, основанный на определении логарифма; потенцирование; логарифмирование; метод замены переменных; приведение к одному основанию.
- 3) Проверку уровня ЗУН можно осуществить, если проводить контроль с помощью тестирования или устного опроса. Рекомендуем проводить разбор основных ошибок, которые могут возникнуть при решении уравнений (неравенств), предложив учащимся задания по типу «найди ошибку», например:

Пример 6. Найдите ошибку в решении уравнения

$$\lg(x(x+3)) + \lg \frac{x+3}{x} = 0,$$

$$\lg x + \lg(x+3) + \lg(x+3) - \lg x = 0,$$

$$2\lg(x+3) = 0, \quad \lg(x+3) = 0,$$

$$x+3 = 10^{0}, \ x+3 = 1,$$

$$x = -2.$$

(Комментарии к решению. Проверка показывает, что x = -2 не является корнем уравнения. И выходит, что у данного уравнения нет корней. Но это не так. В исходном уравнении x и x+3 могут быть одновременно оба отрицательными или оба положительными, но при переходе к уравнению $\lg x + \lg(x+3) + \lg(x+3) - \lg x = 0$ эти же выражения могут быть только положительными. То есть произошло сужение области определения и это привело к потере корня. Чтобы избежать потери корня, можно поступить следующим образом: перейдем в исходном уравнении от логарифма суммы к логарифму произведения. Возможно, в этом случае появление посторонних корней, но от них, путем подстановки, можно освободится.

Можно поступить следующим образом: преобразуем исходное уравнение в уравнение вида

$$\lg(x(x+3)) = -\lg \frac{x+3}{x},$$

$$\lg(x(x+3)) = \lg \frac{x}{x+3},$$

$$\begin{cases} x(x+3) = \frac{x}{x+3}, \\ x(x+3) > 0; \end{cases}$$

$$\begin{cases} \begin{bmatrix} x = 0, \\ (x+3)^2 = 1, \\ x(x+3) > 0; \end{bmatrix} & \begin{cases} (x+3)^2 = 1 \\ x(x+3) > 0; \end{cases}$$

$$\begin{cases} \begin{bmatrix} x + 3 = 1, \\ x + 3 = -1, \\ x(x+3) > 0; \end{bmatrix} & \begin{cases} x = -2, \\ x = -4, \\ x(x+3) > 0; \end{cases}$$

4. Одна из ошибок связана с графическим решением уравнений.

Некоторые уравнения необходимо решать графически, если другими элементарными способами их решить нельзя.

Пример 7. Решить уравнение
$$\left(\frac{1}{16}\right)^x = \log_{\frac{1}{16}} x$$
.

Решение. Решая графически (рис. 3) получают лишь один корень (он является абсциссой точки, лежащей на прямой y=x), так как графики функций $y=\left(\frac{1}{16}\right)^x$, $y=\log_{\frac{1}{16}}x$ это графики взаимно обратных функций.

На самом деле исходное уравнение имеет три корня: один из них является абсциссой точки, лежащей на биссектрисе первого координатного угла y=x, другой корень $x=\frac{1}{4}$ и третий $x=\frac{1}{2}$. Убедиться в справедливости сказанного можно непосредственной подстановкой чисел $\frac{1}{4}$ и $\frac{1}{2}$ в заданное уравнение. Может встретиться задание, где графическое решение уравнения f(x)=g(x) будет верным, когда одна из функций возрастает, а другая наоборот, убывает. Но случается и такое, когда решение не является математически правильным.

Это возможно, когда обе функции возрастают или убывают одновременно, например, $-3x-2=\log_{0,5}x$. В данном уравнении обе функции убывают и точек пересечения у них нет.

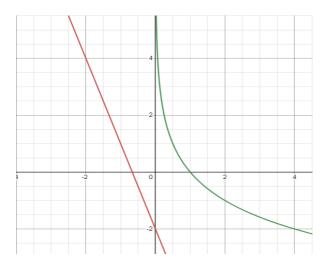


Рисунок 3 – Графики функций y = -3x - 2 и $y = \log_{0.5} x$

Рекомендации по устранению ошибки.

- 1) Повторить теоретический материал по графическому методу решения уравнений (неравенств);
- 2) Повторить свойства логарифмической функции и ее графика;
- 3) Рассмотреть примеры графического метода решения логарифмических уравнений и неравенств.

Пример 8. Решите уравнение $3 - 2x = 3 \log_2(x + 2)$.

Решение. Построим графики функций y = 3 - 2x и $y = 3\log_2(x + 2)$.

Графики этих функций (рис. 4) имеют одну общую точку, абсцисса которой x=0. Проверка показывает, что это точное значение корня.

Ответ: x = 0.

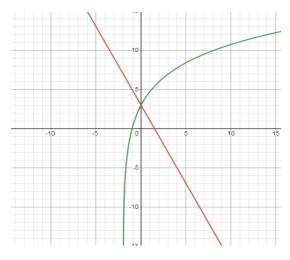


Рисунок 4 — Графики функций y = x - 2 и $y = \log_2 x$

5. Можно выделить еще такие ошибки, которые связаны с заменой переменной. Если в уравнении или неравенстве присутствует несколько степеней, то некоторые учащиеся забывают или путаются какую степень необходимо заменить. Учащиеся часто допускают ошибку, используя не то равенство, которым вспомогательная переменная вводилась [12].

Пример 9. $\log_2^2 5x - 2\log_2 5x = 2$.

Учащийся заменяет следующим образом: $t = \log^2_2 5x$.

В данном примере учащийся заменяет переменную с наибольшей степенью, что приводит уравнение к следующему виду:

$$t - 2\sqrt{t} = 2,$$

$$t - 2\sqrt{t} - 2 = 0.$$

Получившееся выражение часто приводит к затруднительному решению.

Рекомендации по устранению ошибки. Данную ошибку необходимо выявить на ранних этапах и ограничить учащихся при выборе замены степеней: заменяется только наименьшая из степеней. Также не путать равенства: сначала необходимо правильно ввести новую переменную и преобразовать данное уравнение (неравенство), затем найти корни получившегося «нового» уравнения и подставить эти корни в то равенство, в котором вводилась новая переменная.

Пример. Решите уравнение $\lg^2\left(\frac{10}{x}\right) + \lg x = 7$.

Решение. Используем свойство (1.4)

$$(\lg 10 - \lg x)^2 + \lg x = 7,$$

$$(1 - \lg x)^2 + \lg x = 7,$$

Проведем замену: пусть $\lg x = t$, тогда $(1 - t)^2 + t = 7$,

$$1 - 2t + t^{2} + t - 7 = 0,$$

$$t^{2} - t - 6 = 0,$$

$$D = b^{2} - 4ac = 1 + 24 = 25, \quad \sqrt{D} = 5.$$

$$t_{1} = \frac{-b - \sqrt{D}}{2 \cdot a} = \frac{1 - 5}{2 \cdot 1} = \frac{-4}{2} = -2;$$

$$t_{2} = \frac{-b + \sqrt{D}}{2 \cdot a} = \frac{1 + 5}{2 \cdot 1} = \frac{6}{2} = 3.$$

Возвращаемся к переменной x:

$$\lg x = -2$$
, $x = 10^{-2}$, $x_1 = 0.01$;
 $\lg x = 3$, $x = 10^3$, $x_2 = 1000$.

Otbet: $x_1 = 0.01$, $x_2 = 1000$.

Ошибки, допускаемые учащимися при решении логарифмических уравнений и неравенств, разнообразны. Выше были рассмотрены некоторые типичные ошибки, приведены примеры и предложены рекомендации по их устранению.

2.3 Логарифмические уравнения и неравенства в материалах ЕГЭ

ЕГЭ является одним из важных событий в жизни школьника.

Единый государственный экзамен (ЕГЭ) — это форма государственной итоговой аттестации (ГИА) по образовательным программам среднего общего образования.

Именно от его результатов зависит как может сложится дальнейшая жизнь, в какое образовательное учреждение можно поступить и какую профессию человек может получить в дальнейшем. Одним из обязательных предметов, которые должен сдать выпускник для получения аттестата, как раз является математика.

Существуют такие документы, которые рекомендуются для организации и проведения ЕГЭ. Одним из обязательных является кодификатор и спецификация. Кодификатором является документ, формируемый ФИПИ (Федеральным институтом педагогических измерений). В нем отражается содержание контрольно-измерительных материалов, касающихся экзамена текущего учебного года, так же он содержат элементы обязательного минимума образовательной программы по предмету. В кодификаторе перечислены темы из школьной программы, которые следует знать для экзамена.

Спецификация - документ, устанавливающий требования (ГОСТ Р ИСО 9000). Это конструкторский документ, содержащий список компонентов, содержащихся в специфицируемое изделие, а также другие конструкторские документы, относящиеся к этому изделию и его неуказанным компонентам (ГОСТ Р 2.106-2019).

Тема «Логарифмические уравнения и неравенства» широко используется в заданиях ЕГЭ как профильного, так и базового уровня. По кодификатору данная тема затрагивается код 2. В таблице 2, можно посмотреть перечень проверяемых требований к результатам образовательной программы.

Таблица 2 - Перечень проверяемых требований к результатам освоения основной образовательной программы среднего общего образования по математике

	Требования к результатам освоения основной образовательной программы среднего общего образования, проверяемые заданиями экзаменационной работы							
Код	Федеральный ФГОС СОО							
контролируемого требования	компонент государственного образовательного стандарта среднего (полного) общего образования	базовый уровень	углублённый уровень					
2	Уметь решать уравнения и неравенства:							
2.1	решать рациональные,	владение	сформированность					
	иррациональные,	стандартными приёмами решения	понятийного					
	показательные,	аппарата по						
	тригонометрические и	1 '	основным разделам					
	логарифмические	иррациональных,	курса математики;					
	уравнения, их системы	показательных,	знаний основных					
2.2	решать уравнения,	степенных,	теорем, формул и					
	простейшие системы	тригонометрически x уравнений и	умения их применять; умения					
	уравнений, используя	неравенств, их	доказывать теоремы					
	свойства функций и их	систем	и находить					
	графиков; использовать для приближенного		нестандартные					
	решения уравнений и		способы решения					

	неравенств	задач;
	графический метод	сформированность
2.2		умений
2.3	решать рациональные,	моделировать
	показательные и	реальные ситуации,
	логарифмические	исследовать
	неравенства, их	построенные
	системы	модели,
		интерпретировать
		полученный
		результат

 ${\rm B}$ таблице 3 можно увидеть перечень элементов содержания, проверяемых на ЕГЭ.

Таблица 3 — Перечень элементов содержания, проверяемые заданиями экзаменационной работы

Код	Код	Элементы содержания, пров	экзаменационной			
раздела	контроли-	работы				
	руемого элемента	Федеральный компонент государственного образовательного стандарта среднего (полного) общего образования	Наличие позиций COO базовый уровень	ФК ГОС в ПООП углублённый уровень		
2	Уравнения	и неравенства				
2.1	Уравнения					
	2.1.6	Логарифмические уравнения	Логарифми- ческие уравнения и неравенства	Логарифми- ческие уравнения и неравенства		
	2.1.7	Равносильность уравнений, систем уравнений				
	2.1.8	Простейшие системы уравнений с двумя неизвестными				

2.1.9	Основные приёмы	Решение задач	Решение задач
	решения систем	на движение и	на движение и
	уравнений: подстановка,	совместную	совместную
	алгебраическое	работу с	работу, смеси и
	сложение, введение	помощью	сплавы с
	новых переменных	линейных и	помощью
		квадратных	линейных,
		уравнений и их	квадратных и
		систем	дробно-
			рациональных
			уравнений и их
			систем
2.1.10	Использование свойств и	Графическое	Графическое
	графиков функций при	решение	решение
	решении уравнений	уравнений и	уравнений и
		неравенств	неравенств
2.1.11	Изображение на		
	координатной плоскости		
	множества решений		
	уравнений с двумя		
	переменными и их		
	систем		

Окончание таблицы 3

2.2	Неравен				
	2.2.4	Логарифмические неравенства	Логарифмически е уравнения и неравенства	Логарифмическ ие уравнения и неравенства	
	2.2.5	Системы линейных неравенств	Решение задач с помощью числовых неравенств и систем неравенств с одной переменной, с применением изображения числовых промежутков	Решение задач с помощью числовых неравенств и систем неравенств с одной переменной, с применением изображения числовых промежутков	
	2.2.6	Системы неравенств одной переменной	С		

2.2.7	Равносильность		Использование
	неравенств, систем		неравенств и
	неравенств		систем
			неравенств с
			одной
			переменной,
			числовых
			промежутков, их
			объединений и
			пересечений
2.2.8	В Использование свойств и	Графическое	Графические
	графиков функций при	решение	методы решения
	решении неравенств	уравнений и	уравнений и
		неравенств	неравенств
2.2.9	Метод интервалов	Метод	Метод
	_	интервалов для	интервалов для
		решения	решения
		неравенств	неравенств
2.2.	0 Изображение на	Графическое	Графическое
	координатной плоскости	r	решение
	множества решений	уравнений и	уравнений и
	неравенств с двумя	неравенств	неравенств
	переменными и их систем		

По спецификации с учетом кодификатора можно посмотреть в каких заданиях проверяются умения по данной теме, а также к какому уровню сложности относится задание, максимальный балл и сколько примерно времени необходимо на его выполнения (см. таблица 4).

Таблица 4 — Спецификация Уровни сложности заданий: Б — базовый, Π — повышенный, B — высокий.

№	Проверяемые требования (умения)	Коды проверяемых требований к уровню подготовки (по кодификатору)	Коды проверяемых элементов содержания (по кодификатору)	ровень сложности задания	Максимальный балл за выполнение задания	Примерное время выполнения задания выпускником, изучавшим математику на базовом уровне, в минутах	Примерное время выполнения задания выпускником, изучавшим математику на профильном уровне, в минутах
		Ко, к уј код	Коу	y_{p}	Ма 3а Б	Пр ³ зад изу баз	Прі зад изу прс

1	Уметь решать уравнения и неравенства	2.1	2.1	Б	1	5	2
12	Уметь решать уравнения и неравенства	2.1–2.3	2.1, 2.2	П	2	20	10
14	Уметь решать уравнения и неравенства	2.3	2.1, 2.2	П	2	30	15
17	Уметь решать уравнения и неравенства	2.1–2.3, 5.1	2.1, 2.2, 3.1 -3.3	В	4	-	35

Рассмотрим примеры типовых заданий, встречающихся в материалах ЕГЭ по данной теме:

Задание № 1. Найдите корень уравнения $\log_3(2-x) = \log_9 16$.

Решение. Перейдем к логарифмам по одному основанию, используя свойства логарифма (1.5) и (1.6):

$$\log_3(2 - x) = \log_{3^2} 16,$$

$$\log_3(2 - x) = \frac{1}{2}\log_3 16,$$

$$\log_3(2 - x) = \log_{3^2} 16,$$

$$\log_3(2 - x) = \frac{1}{2}\log_3 16,$$

$$\log_3(2 - x) = \log_3 16^{\frac{1}{2}}.$$

Отсюда получаем уравнение, не содержащее логарифмы:

$$2 - x = 4,$$

$$-x = 4 - 2,$$

$$-x = 2,$$

$$x = -2.$$

Ответ: x = -2.

Задание № 12. а) Решите уравнение $16 \log_9^2 x + 4 \log_{\frac{1}{3}} x - 3 = 0$;

- б) Найдите все корни этого уравнения, принадлежащие отрезку [0,5; 5]. Решение.
 - а) Найдем ОДЗ уравнения: x > 0.

Преобразуем уравнение, используя свойство логарифма (1.5):

$$16\log_{3^{2}} x + 4\log_{3^{-1}} x - 3 = 0,$$

$$16\log_{3^{2}} x \cdot \log_{3^{2}} x + 4\log_{3^{-1}} x - 3 = 0,$$

$$16 \cdot \frac{1}{2}\log_{3} x \cdot \frac{1}{2}\log_{3} x + 4 \cdot \frac{1}{-1}\log_{3} x - 3 = 0,$$

$$4 \cdot \log_{3}^{2} x - 4\log_{3} x - 3 = 0.$$

Произведем замену $z = \log_3 x$ и найдем корни уравнения:

$$4z^{2} - 4z - 3 = 0,$$

$$D = b^{2} - 4ac = (-4)^{2} - 4 \cdot 4 \cdot (-3) = 16 + 48 = 64, \quad \sqrt{D} = 8.$$

$$z_{1} = \frac{-b - \sqrt{D}}{2a} = \frac{4 - 8}{2 \cdot 4} = -\frac{4}{8} = -\frac{1}{2},$$

$$z_{2} = \frac{-b + \sqrt{D}}{2a} = \frac{4 + 8}{2 \cdot 4} = \frac{12}{8} = \frac{3}{2}.$$

Теперь из уравнения $\log_3 x = -\frac{1}{2}$ находим

$$x_1 = 3^{-\frac{1}{2}} = \frac{1}{\frac{1}{3^{\frac{1}{2}}}} = \frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}}{3}.$$

Из уравнения $\log_3 x = \frac{3}{2}$ находим $x_2 = 3^{\frac{3}{2}} = \sqrt{3^3} = 3\sqrt{3}$. Оба корня принадлежат ОДЗ.

б) Найдем корни этого уравнения, принадлежащие отрезку [0,5; 5].

$$\frac{\sqrt{3}}{3} \approx 0.57 \in [0.5; 5], 3\sqrt{3} \approx 5.19 \notin [0.5; 5].$$

Otbet: a) $\frac{\sqrt{3}}{3}$; $3\sqrt{3}$; 6) $\frac{\sqrt{3}}{3}$.

Задание № 14. Решите неравенство $\log_{5}^{2}(x^{4}) - 28 \log_{0,04}(x^{2}) \le 8$.

Решение. Преобразуем неравенство

$$\log_{5}^{2}(x^{4}) - 28 \log_{\frac{4}{100}}(x^{2}) - 8 \le 0,$$

$$\log_{5}^{2}(x^{4}) - 28 \log_{\frac{1}{25}}(x^{2}) - 8 \le 0,$$

$$\log_{5}(x^{4}) \cdot \log_{5}(x^{4}) - 28 \log_{5^{-2}}(x^{2}) - 8 \le 0.$$

Используем свойства логарифма (1.5) и (1.6):

$$16\log_{5}^{2} x + 28\log_{5} x - 8 \le 0.$$

Произведем замену переменной, пусть $y = \log_5 x$

$$16y^{2} + 28y - 8 \le 0,$$

$$4y^{2} + 7y - 2 \le 0,$$

$$4y^{2} + 7y - 2 = 0, \quad \sqrt{D} = 9, \quad y_{1} = -2, y_{2} = \frac{1}{4}.$$

$$4\left((y+2)\left(y - \frac{1}{4}\right)\right) \le 0$$

 $y \in [-2; 0,25].$

Так как $y = \log_5 x$, то получаем:

$$\begin{cases} y \ge -2, \\ y \le \frac{1}{4}. \end{cases} \iff \begin{cases} \log_5 x \ge -2, \\ \log_5 x \le \frac{1}{4}. \end{cases} \iff \begin{cases} \log_5 x \ge \log_5 5^{-2}, \\ \log_5 x \le \log_5 5^{\frac{1}{4}}. \end{cases}$$

Отсюда следует

$$\begin{cases} x \ge 5^{-2}, \\ x \le 5^{\frac{1}{4}}. \end{cases} \Leftrightarrow \begin{cases} x \ge 0.04, \\ x \le \sqrt[4]{5}. \end{cases}$$

$$\underbrace{\qquad \qquad }_{0.04}$$

Ответ: $[0,04; \sqrt[4]{5}]$.

Задание № 17. Найдите все такие значения a при каждом из которых уравнение $\sqrt{5-7x} \ln(9x^2-a^2) = \sqrt{5-7x} \ln(3x+a)$ имеет ровно один корень.

Решение. Найдем ОДЗ:

$$\begin{cases} \sqrt{5-7x} \ge 0, \\ 3x+a > 0, \\ 9x^2-a^2 > 0. \end{cases} \Rightarrow \begin{cases} -7x \ge -5, \\ 3x > -a, \\ 9x^2 > a^2. \end{cases} \Rightarrow \begin{cases} x \le \frac{5}{7}, \\ x > -\frac{a}{3}, \\ x^2 > \frac{a^2}{9}. \end{cases} \Rightarrow \begin{cases} x \le \frac{5}{7}, \\ x > -\frac{a}{3}, \\ x > \frac{a}{3}. \end{cases}$$

Перенесем в одну часть и с помощью свойства логарифма $\log_a b - \log_a c = \log_a \frac{b}{c}$ преобразуем уравнение:

$$\sqrt{5 - 7x} \ln(9x^2 - a^2) - \sqrt{5 - 7x} \ln(3x + a) = 0,$$

$$\sqrt{5 - 7x} (\ln(9x^2 - a^2) - \ln(3x + a)) = 0,$$

$$\sqrt{5 - 7x} \left(\ln \frac{(9x^2 - a^2)}{(3x + a)} \right) = 0,$$

$$\sqrt{5 - 7x} \left(\ln \frac{(3x + a)(3x - a)}{(3x + a)} \right) = 0,$$

$$\sqrt{5 - 7x} (\ln(3x - a)) = 0,$$

Отсюда,

$$\sqrt{5-7x} = 0,$$
 $\ln(3x-a) = 0,$ $5-7x = 0,$ $\ln(3x-a) = \ln 1,$ $-7x = -5,$ $3x-a = 1,$

$$x_1 = \frac{5}{7}. x_2 = \frac{1+a}{3}.$$

Получившие x_1 и x_2 подставим в ОДЗ и найдем a:

$$x_{1}: \begin{cases} \frac{5}{7} \leq \frac{5}{7}, \\ \frac{5}{7} > -\frac{a}{3}, \\ \frac{5}{7} > \frac{a}{3}. \end{cases} \implies \begin{cases} a > -\frac{15}{7}, \\ a < \frac{15}{7}. \end{cases}$$

$$-\frac{15}{7} - \frac{1}{2} \quad \frac{8}{7} \quad \frac{15}{7}$$

Otbet:
$$a \in \left(-\frac{15}{7}; -\frac{1}{2}\right) \cup \left[\frac{8}{7}; \frac{15}{7}\right)$$
.

В данных заданиях по статистике выполнения заданий КИМ умение решать уравнения и неравенства в задании 5 базового уровня составляет 92,42%, это задание представляет собой базовый уровень простого показательного, логарифмического, дробно-рационального или иррационального уравнения. Оно упрощается в линейное или квадратное, или тригонометрическое уравнения за одно или два действия. Часть ошибочных ответов связана с использованием равносильных переходов, а также с ошибками решения различных типов уравнений.

Задание № 15 является заданием повышенного уровня и на 2019 год средний процент его решения составил 16,9%. Задание заключалось в решение логарифмического неравенства: необходимо было ввести новую переменную и свести логарифмическое неравенство к рациональному неравенству, а затем решить его одним из методов. Большинство учащихся справилась только с первой частью решения, но они сталкиваются с трудностями во второй части. Частая ошибка заключается в том, что школьники теряют часть решения и не учитывают, что логарифмическая функция определяется только как

положительное значение, что приводит к тому, что исходное неравенство не имеет смысла.

Для подготовки учащихся к ЕГЭ можно предложить структурированный материал, представленный в буклетах (см. Приложение A и Б).

Таким образом, при подготовке к ЕГЭ необходимо обратить особое внимание на тему «Логарифмические уравнения и неравенства», так как данная тема встречается в заданиях ЕГЭ (№1, 12, 14, 17) и согласно статистике у многих школьников вызывает затруднения.

Тема «Логарифмические уравнения и неравенства» занимает особое место в материалах ЕГЭ. Она подтверждена и спецификацией, и кодификатором. При решении логарифмических уравнений и неравенств учащиеся часто совершают разнообразные ошибки, например, ошибки, связанные с заменой переменной; ошибки, связанные с графическим решением; невнимание к области определения и др. Помочь преодолеть эти ошибки могут разработанные буклеты, представленные в Приложениях А-В.

ЗАКЛЮЧЕНИЕ

В настоящее время учащиеся сталкиваются с серьезными трудностями в изучении математики. В выпускной квалификационной работе нами была рассмотрена важная тема «Методика изучения темы «Логарифмические уравнения и неравенства» в курсе математики средней школы». Изучение логарифмических уравнений и неравенств очень важно в школьной программе по математике, поскольку примеры по данной теме встречаются в заданиях ЕГЭ и при решении логарифмических уравнений и неравенств у учащихся часто появляются затруднения.

В ходе написания данной работы были рассмотрены основные понятия и виды логарифмических уравнений и неравенств. Было выяснено, что при решении данных уравнений используются следующие основные методы решения: замена переменных, потенцирование, логарифмирование, приведение к одному основанию и др.

Нами также была проанализированы школьные учебники таких авторов как А. Г. Мордковича, А. Г. Мерзляка, А. Н. Колмогорова, Н. Я. Виленкина. В рассматриваемых учебниках теоретический материал схожий между собой, но отличается глубиной изучения. В этих учебниках все авторы используют основные методы решения, подобные определения, практические задания похожи по уровню сложности.

Кроме того, были рассмотрены логарифмические уравнения и неравенства в материалах ЕГЭ (данная тема широко используется в ЕГЭ базового и профильного уровня в заданиях 1, 12, 14 и 17) и разработаны методические материалы (буклеты) для подготовки учащихся к экзамену:

- 1. Логарифмические уравнения;
- 2. Логарифмические неравенства.

В буклетах содержится материал, который включает основные понятия логарифмических уравнений и неравенств, свойства логарифма и их методы решения с примерами.

Также на основе анализа научно-методической литературы были разобраны типичные ошибки, такие как: нарушение равносильности преобразований логарифмических уравнений и неравенств, невнимание к области определения, ошибка в графическом решении уравнений и др. По данным ошибкам были разработаны рекомендации по их устранению.

Задачи и цели, поставленные в ходе выполнения выпускной квалификационной работы, достигнуты. Подводя итоги, можно отметить, что созданные методические материалы можно использовать учителям и учащимся средней школы при изучении темы «Логарифмические уравнения и неравенства» и для подготовки к ЕГЭ.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Алимов, Ш. А. Алгебра и начала математического анализа. 10-11 классы : учеб. для общеобразоват. учреждений : базовый уровень / Ш. А. Алимов, Ю. М. Колягин, М. В. Ткачева [и др.] 18-е изд. Москва : Просвещение, 2012. 464 с.
- 2. Бабичева, Т. А. Учебное пособие «Решение логарифмических уравнений» (практикум) / Т. А. Бабичева. Махачкала : ДГУНХ, 2018. 32 с.
- 3. Балаян, Э. Н. Математика: задачи типа C5: уравнения, неравенства и системы с параметрами / Э. Н. Балаян. Ростов на Дону : Феникс, 2014. 223 с.
- 4. Барвенов, С. А. Методы решения показательных и логарифмических уравнений, неравенств, систем: учебник для общеобразовательных учреждений / А. И. Азаров, С. А. Барвенов. Москва: Аверсэв, 2005. 288 с.
- 5. Блох, А. Методика преподавания математики в средней школе / А. Блох, Е. С. Канин, Е. С. Черкасов [и др.] – Москва : Просвещение, 2015. – 336 с.
- 6. Виленкин, Н. Я. Алгебра и начала математического анализа. 11 класс: учеб. для общеобразоват. учреждений / Н. Я. Виленкин, О. С. Ивашев-Мусатов, С. И. Шварцбурд, 30-е изд, стер. Москва : Мнемозина, 2014. 288 с.
- 7. Власова, А. П. Задачи с параметрами. Логарифмические и показательные уравнения, неравенства, системы уравнений. 10-11 классы / А.П. Власова, Н.И. Латанова. Москва : Дрофа, 2007. 490 с.
- 8. Галицкий, М. Л. Углубленное изучение курса алгебры и математического анализа. Методические рекомендации и дидактические материалы / М. Л. Галицкий, М. М. Мошкович, С. И. Шварцбурд. Москва: Просвещение, 1986. 352 с.
- 9. Гейдман, Б. П. Логарифмические и показательные уравнения и неравенства / Б. П. Гейдман. Москва : МЦНМО, 2013. 185 с.
- 10. Глухов, М. М. Задачник-практикум по алгебре / М. М. Глухов, А. С. Солодовников. Москва : Просвещение, 2009. 276 с.
- 11. Далингер, В. А. Математика: логарифмические уравнения и неравенства: учебное пособие для среднего профессионального образования / В.

- А. Далингер. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2020. 176 с.
- 12. Далингер, В. А. Типичные ошибки учащихся при решении логарифмических уравнений и неравенств их систем и пути их предупреждения / В. А. Далингер // Международный журнал Экспериментального образования. 2015. № 4-2. с. 445-450.
- 13. Иванов, А. А Математика. Пособие для подготовки к ЕГЭ / А. А. Иванов, А. П. Иванов. Москва : Физматкнига, 2011. 52 с.
- 14. Ивлев, Б. М. Дидактические материалы по алгебре и началам анализа для 11 класса / Б. М. Ивлев, С. М. Саакян, С. И. Шварцбурд. Москва : Просвещение, 2013. 143 с.
- 15. Жукова, Н. Д. История логарифмов. Различные подходы к определению логарифма // Молодой ученый. 2019. №18. С. 78-81.
- 16. Жафяров, А. Ж. Профильное обучение математике старшеклассников учебно-дидактический комплекс / А. Ж. Жафяров. Новосибирск : Сиб. унив., 2003. 48 с.
- 17. Захаров, А. М Логарифм и его свойства. Логарифмические уравнения и неравенства: методическое пособие / А. М. Захаров, М. В. Крылова. Саратов : 2017.
- 18. Колмогоров, А. Н. Алгебра и начала анализа: учеб. для 10-11 кл. общеобразоват. учреждений/ А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын [и др.]; под ред. А. Н. Колмогорова. 26-е изд. Москва: Просвещение, 2018. 384 с.
- 19. Кокурина, Ю. К. Арифметика, алгебра, анализ / Ю. К. Кокурина Владимир : ВлГУ, 2016. 143 с.
- 20. Кудрявцев, Л. Д. Курс математического анализа / Л. Д. Кудрявцев. Москва : Дрофа, 2004. Т.1. 687 с.
- 21. Курош, А. Г. Курс высшей алгебры : учебник для вузов / А. Г. Курош. 22-е изд. стер. Санкт-Петербург : Лань, 2021. 432 с.

- 22. Лисаченко, О. А. Особенности методики построения системы задач для изучения темы «Логарифмы. Логарифмические уравнения» / О. А. Лисаченко, И. В Яковенко // Вестник Таганрогского государственного педагогического института. 2017. № 1. с. 287-292.
- 23. Литвиненко, В. Н. Практикум по элементарной математике: Алгебра. Тригонометрия / В. Н. Литвиненко, А. Г. Мордкович. Москва : ABF, 2013.
- 24. Ляхова, Н. Е. Методы решения уравнений и неравенств в задачах с параметрами: учеб. пособие / Н. Е. Ляхова, И. В. Яковенко; отв. ред. проф. А. А. Илюхин. Таганрог : ТГПИ имени А.П. Чехова, 2014. 92 с.
- 25. Мордкович, А. Г. Алгебра и начала анализа. 10-11 кл. : В двух частях. Ч. 1 : Учеб. для общеобразоват. учреждений. / А. Г. Мордкович. 14-е изд. Москва : Мнемозина, 2013. 400 с.
- 26. Мордкович, А. Г. Алгебра и начала анализа: 11 класс. В 2 ч. Ч. 2 Задачник для учащихся общеобразовательных учреждений (профильный уровень) / под ред. А. Г. Мордковича. 3-е изд., стер. Москва : Мнемозина, 2013. 264 с.
- 27. Мерзляк, А. Г. Математика : алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа: 11 класс: методическое пособие. / Буцко Е. В., Мерзляк А. Г., Номировский Д. А. , Полонский В. Б. [и др.] Москва : Вентана-Граф, 2018. 83 с.
- 28. Никольский, С. М. Алгебра и начала математического анализа. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин. 8-е изд. Москва: Просвещение, 2009. 464 с.
- 29. Лаппо, Л. Д. ЕГЭ. Математика. Подготовка к ЕГЭ / Л. Д. Лаппо. Москва : Издательство «Экзамен», 2017.
- 30. Олехник, С. Н. Уравнения и неравенства. Нестандартные методы решения / С. Н. Олехник, М. К. Потапов, П. И. Пасиченко. Москва : Дрофа, 2015.

- 31. Петрович, А. Ю. Логарифмические уравнения и неравенства / А. Ю. Петрович. Москва : Подготовительные курсы, 2008. 20 с.
- 32. Радченко, С. А. Методика решения задач повышенной сложности по математике. Раздел «Логарифмические неравенства» / С. А. Радченко. Славянск-на-Кубани : Филиал Кубанского гос. ун-та в г. Славянске-на-Кубани, 2018. 29 с.
- 33. Рисберг, В. Г. Решение показательных и логарифмических уравнений, неравенств и систем уравнений повышенного и высокого уровня сложности. Ч.1 / В. Г. Рисберг. Пермь : Пушка, 2015. 56 с.
- 34. Севрюков, П. Ф. Тригонометрические, показательные и логарифмические уравнения и неравенства: учебное пособие / П. Ф. Севрюков, А. Н. Смоляков. Москва: Илекса; Народное образование; Ставрополь: Сервисшкола, 2008. 352 с.
- 35. Сканави, М. И. Логарифмические уравнения и неравенства. Полный сборник решений задач для поступающих в вузы / М. И. Сканави. Москва : Мир и Образование, 2015. 912 с.
- 36. Сканави, М. И. Элементарная математика / М. И. Сканави, В. В. Зайцев, В. В. Рыжков [и др.]. 2-е изд., перераб. и доп. Москва : Наука, 1974. 592 с.
- 37. Смирнова, И. М. Профильная модель обучения математике / И. М. Смирнова // Математика в школе. 1997.
- 38. Столяр, А. А. Методы обучения математике: учеб. пособие / А. А. Столяров. Минск : ВШ, 1966. 191 с.
- 39. Шахмейстер, А. Х. Логарифмы: Учебное пособие по математике / А. Х. Шахмейстер. Санкт-Петербург: Петроглиф, Виктория плюс, МЦНМО, 2016. 290 с.
- 40. Хуторской, А. В. Современная дидактика: Учебное пособие / А. В. Хуторской. СПб. : Питер, 2001. 544 с.
- 41. Цыпкин, А. Г. Справочник по математике для средней школы / А. Г. Цыпкин. Москва : Наука, 1980.

- 42. Фридман, Л. М. Психолого-педагогические основы обучения математики в школе / Л. М. Фридман. Москва : Просвещение, 2015.
- 43. Ященко, И. В. ЕГЭ. Математика. Профильный уровень: типовые экзаменационные варианты: 36 вариантов / И. В. Ященко [и др.]; под ред. И. В. Ященко. Москва: Издательство «Национальное образование», 2017. 256с.
- 44. Ященко, И. В. ЕГЭ, универсальные материалы для подготовки учащихся. Математика. / И. В. Ященко, А. Л. Семенов [и др.] Москва : Интеллект-центр, 2011.

Логарифмические уравнения

Приложение А. Буклет для учащихся по теме «Логарифмические уравнения»

Логарифмом числа x > 0 по основанию a > 0, $a \ne 1$ называется показатель степени, в которую надо возвести число a, чтобы получить число x.

Свойство логарифма:

$$1.\log_a b \cdot c = \log_a b + \log_a c;$$

$$2. \log_a \frac{b}{c} = \log_a b - \log_a c;$$

$$3. \log_{a^x} b = \frac{1}{x} \log_a b;$$

4.
$$\log_a b^y = y \log_a b$$
;

$$5.\log_a b = \frac{\log_c b}{\log_c a}.$$

Погарифмическое уравнение - уравнение, содержащее неизвестную величину под знаком логарифма.

Существуют следующие виды логарифмических уравнений:

1. Простейшие уравнения

$$\log_a x = b$$
, где $a > 0$, $a \neq 1$,

2. Простейшие с переменной в основании логарифма

$$\log_{f(x)} a = \log_{g(x)} a.$$

3. Простейшие с переменной и основании, и под логарифмом

$$\log_{g(x)} f(x) = b.$$

4. Уравнения вида

$$\log_{f(x)} g(x) = \log_{f(x)} h(x),$$

$$\log_{g(x)} f(x) = \log_{p(x)} f(x).$$

Решить логарифмическое уравнение значит найти все его корни или доказать, При нет. решении логарифмических уравнений проводятся преобразования, которые не приводят к потере корня, но могут привести к появлению посторонних корней. Найдя корни уравнения, рекомендуется сделать проверку.

Методы решения логарифмических уравнений

- Решение уравнений с помощью определения логарифма

Данным методом решаются простейшие уравнения вида $\log_a x = b$. Суть метода заключается в использование самого определения логарифма в решении.

Пример. Решить уравнение $\log_3(x+1) = 3$ Решение. По определению логарифма:

$$x + 1 = 3^3$$
, $x + 1 = 27$, $x = 27 - 1$, $x = 26$,
Other: $x = 26$.

- Решение уравнений с помощью потенцирования

Чтобы решить уравнение необходимо с помощью формул привести уравнение к виду $\log_a f(x) = \log_a g(x)$. При a > 0 и $a \neq 1$ это уравнение равносильно системе

$$\begin{cases} f(x) > 0, \\ g(x) > 0, \\ f(x) = g(x) \end{cases}$$

Пример. Решите уравнение

$$\log_5(x+3) - 1 = \log_5(x+1).$$

Решение. Учитывая область определения, получаем систему:

$$\begin{cases} x+1>0, \\ x+3>0; \Longrightarrow \begin{cases} x>-1, \\ x>-3; \Longrightarrow x>-1. \end{cases}$$

Используя определение логарифма, получаем:

$$\log_5(x+3) - \log_5 5 = \log_5(x+1)$$
. Применим свойство 2:

$$\log_5\frac{(x+3)}{5} = \log_5(x+1),$$
 потенцируем
$$\frac{(x+3)}{5} = (x+1),$$
 или $x+3=5x+5.$ Откуда: $x-5x=5-3,$ -4 $x=2,$ $x=-0,5.$ Данное значение x удовлетворяет ОДЗ.

Ответ: x = -0.5.

- Замена переменных

Если в уравнение переменная входит в одном и том же виде, то соответствующее выражение

с переменной удобно обозначить одной буквой (новой переменной).

Пример. Решить уравнение

$$\log_2^2 x + 2\log_2 x - 15 = 0.$$

Решение. Пусть $z = \log_2 x$, тогда уравнение примет вид $z^2 + 2z - 15 = 0$. По теореме Виета находим корни: $z_1 = 3$ и $z_2 = -5$.

Если
$$z_1 = 3$$
, то $\log_2 x = 3$. Отсюда $x_1 = 8$;
Если $z_2 = -5$, то $\log_2 x = -5$. Отсюда $x_2 = \frac{1}{32}$
Ответ: $x_1 = 8$; $x_2 = \frac{1}{32}$.

- Логарифмирование

Если взять логарифм равных величин по одному и тому же основанию, то эти логарифмы тоже будут равными. Этот метод используют, когда уравнение содержит переменную и в основании, и в показателе степени.

Пример. Решите уравнение $x^{1-\log_5 x} = 0.04$.

Решение. Логарифмируем обе части уравнения по основанию 5, получим $\log_5 x^{1-\log_5 x} = \log_5 0,04$. Учтем свойства логарифма и тогда в левой части получим $(1-\log_5 x)\cdot\log_5 x$. В правой части $\log_5 0,04 = \log_5 \frac{1}{25} = \log_5 5^{-2} = -2$.

Тогда исходное уравнение примет вид

$$(1 - \log_5 x) \cdot \log_5 x = -2.$$

Пусть $z = \log_5 x$. Получим уравнение

$$(1-z)z = -2$$
, $z - z^2 + 2 = 0$.

Корни данного уравнения $z_1 = -1$ и $z_2 = 2$. Если $z_1 = -1$, то $\log_5 x = -1$. Тогда $x_1 = \frac{1}{5}$, Если $z_2 = 2$, то $\log_5 x = 2$. Тогда $x_2 = 25$. Ответ: $x_1 = \frac{1}{5}$, $x_2 = 25$.

- Приведение к одному основанию

Данный метод заключается в переходе от уравнения $\log_a f(x) = \log_a g(x)$ к уравнению f(x) = g(x). Решив уравнение f(x) = g(x), проверяют полученные корни по условиям f(x) > 0, g(x) > 0, определяющим область допустимых значений (ОДЗ) переменной x. Те корни, которые удовлетворяют данным условиям, являются корнями уравнения $\log_a f(x) = \log_a g(x)$.

Пример. Решите уравнение

$$\log_2 x + \log_{16} x + \log_4 x = 7.$$

Решение. Приведем все логарифмы к основанию 2 по формуле 5:

$$\log_4 x = \frac{\log_2 x}{\log_2 4} = \frac{\log_2 x}{2},$$
 аналогично $\log_{16} x = \frac{\log_2 x}{4}.$

Получаем уравнение:

$$\log_2 x + \frac{1}{2}\log_2 x + \frac{1}{4}\log_2 x = 7,$$

$$(\frac{1}{4} + \frac{1}{2} + 1)\log_2 x = 7,$$

$$\frac{7}{4}\log_2 x = 7,$$

$$\log_2 x = 4,$$

$$x = 2^4$$

Ответ: x = 16

Логарифмические неравенства

Приложение Б. Буклет для учащихся по теме «Логарифмические неравенства»

Логарифмом числа x > 0 по основанию a > 0, $a \ne 1$ называется показатель степени, в которую надо возвести число a, чтобы получить число x.

Логарифмическим неравенством называ ют неравенство, содержащее переменную под знаком логарифма и/или в основании логарифма.

Пусть a — данное положительное, не равное 1 число, b — данное действительное число. Тогда неравенство

$$\log_a x > b$$
, $\log_a x < b$

называются простейшими *логарифмическим неравенствами*.

Свойство логарифма:

$$1.\log_a b \cdot c = \log_a b + \log_a c;$$

$$2. \log_a \frac{b}{c} = \log_a b - \log_a c;$$

$$3. \log_{a^x} b = \frac{1}{x} \log_a b;$$

$$4. \log_a b^y = y \log_a b;$$

$$5.\log_a b = \frac{\log_c b}{\log_c a}.$$

Решить логарифмическое неравенство — значит найти все его корни или доказать, что их нет.

Существует общий алгоритм для решения логарифмических неравенств:

- 1. Сначала необходимо найти область допустимых значений неравенства;
- 2. Затем логарифмическое неравенство нужно привести к неравенству с одинаковыми основаниями логарифмов, а потом с одинаковыми выражениями под логарифмами;
- 3. Если требуется сделать замену переменной. Получим простое алгебраическое неравенство;
- 4. Решить получившееся неравенство, сделать обратную замену. Это приведет к совокупности простейших логарифмических неравенств, которые легко решить.

Методы решения логарифмических неравенств

При решении простейших логарифмических неравенств используют свойство монотонности, а также методы, которые аналогичны методам решения логарифмических уравнений:

- Решение уравнений, основанных на определении логарифма;
- Решение уравнений с помощью потенцирования;
- Метод замены переменных;
- Логарифмирование;
- Приведение к одному основанию (См. Приложение A).

Но также используются следующие методы:

1. Решение неравенства вида

$$\log_a f(x) > \log_a g(x), \tag{1}$$

где $\begin{cases} a>0,\\ a\neq 1, \end{cases}$ основно на следующих двух теоремах:

Теорема 1. Если a > 1, то неравенство (1) равносильно системе неравенств

$$\begin{cases} f(x) > 0, \\ g(x) > 0, \\ f(x) > g(x). \end{cases}$$

Теорема 2. Если 0 < a < 1, то неравенство (1.11) равносильно системе неравенств

$$\begin{cases} f(x) > 0, \\ g(x) > 0, \\ f(x) < g(x). \end{cases}$$

Пример 1. Решите неравенство $\lg(2x^2 + 4x + 10) > \lg(x^2 - 4x + 3)$.

Решение. Основание логарифма больше 1, поэтому в данном неравенстве применима теорема 1. В соответствие с ней получаем систему неравенств:

$$\begin{cases} 2x^2 + 4x + 10 > 0, \\ x^2 - 4x + 3 > 0, \\ 2x^2 + 4x + 10 > x^2 - 4x + 3. \end{cases}$$

Опустив первое неравенство (как следствие второго и третьего неравенств) и выполнив упрощения в третьем неравенстве, получим систему:

$$\begin{cases} x^2 - 4x + 3 > 0, \\ x^2 + 8x + 7 > 0, \end{cases} \to \begin{cases} (x - 1)(x - 3) > 0, \\ (x + 1)(x + 7) > 0, \end{cases}$$

откуда находим $x \in (-\infty; -7) \cup (-1; 1) \cup (3; \infty)$ – решение заданного неравенства.

Otbet: $x \in (-\infty; -7) \cup (-1; 1) \cup (3; ∞)$.

2. Неравенства, содержащие логарифмы по переменному основанию

Рассмотрим неравенство

$$\log_{\varphi(x)} f(x) > \log_{\varphi(x)} g(x).$$

Имеет смысл отдельно рассматривать те значения x, для которых $\varphi(x) > 1$, и те значения x, для которых $0 < \varphi(x) < 1$.

В первом случае неравенство сводится к неравенству f(x) > g(x) (нужно также учесть, что g(x) > 0).

Во втором случае неравенство сводится к неравенству f(x) < g(x) (нужно также учесть, что f(x) > 0). Таким образом, исходное неравенство равносильно совокупности двух систем неравенств:

$$\begin{cases} \varphi(x) > 1, \\ f(x) > g(x) > 0; \\ 0 < \varphi(x) < 1, \\ 0 < f(x) < g(x). \end{cases}$$

При решении неравенства таким способом нет необходимости выписывать ОДЗ; все соответствующие неравенства уже учтены.

Пример 2. Решите неравенство

$$\log_{5x-4x^2}(4^x-2) < 0.$$

Решение. Неравенство равносильно

совокупности двух систем неравенств

$$\begin{cases}
5x - 4x^2 > 1, \\
0 < 4^x - 2 < 1. \\
0 < 5x - 4x^2 < 1,
\end{cases}
\Leftrightarrow
\begin{cases}
4x^2 - 5x + 1 < 0, \\
4^x > 2, \\
4^x < 3; \\
4x^2 - 5x < 0, \\
4x^2 - 5x + 1 > 0,
\end{cases}$$

$$\begin{cases} x \in \left(\frac{1}{4}; 1\right), \\ x > \frac{1}{2}, \\ x < \log_4 3, \\ x \in \left(0; \frac{5}{4}\right), \\ x \in \left(-\infty; \frac{1}{4}\right) \cup (1; +\infty), \\ x > \log_4 3. \end{cases} \Leftrightarrow \begin{bmatrix} x \in \left(\frac{1}{2}; \log_4 3\right), \\ x \in \left(1; \frac{5}{4}\right). \end{cases}$$

Otbet:
$$x \in \left(\frac{1}{2}; \log_4 3\right) \cup \left(1; \frac{5}{4}\right)$$
.

Теорема 3. Простейшее логарифмическое неравенство решается потенцированием с использованием монотонности логарифмической функции:

$$\log_a f(x) > b \iff f(x) > a^b \ (a > 1)$$

$$\log_a f(x) > b \iff 0 < f(x) < a^b \ (0 < a < 1).$$

Пример 3. Решите неравенство $\log_3 x > 2$. Решение. Используя теорему 3, получаем:

$$\log_3 x > 2 \iff x > 3^2 \iff \begin{cases} x > 9, \\ x > 0. \end{cases}$$

Основание логарифма больше единицы, а это значит, что знак неравенства сохраняется. Отсюда следует, что $x \in (9; +\infty)$.

Otbet: $x \in (9; +\infty)$.

Приложение В. Основные ошибки при решении логарифмических уравнений и неравенств

Типичные ошибки при решении логарифмических уравнений (неравенств)

их устранение

Существуют следующие типичные ошибки, которые могут возникнуть при решении логарифмических уравнений и неравенств:

1. Нарушение равносильности при выполнении преобразований.

Рекомендации:

- 1. Повторить понятия равносильности уравнений и неравенств и их следствий;
- 2. Записывать и приводить все дополнительные рассуждения (находить ОДЗ);
- 3. Контролировать учащихся, чтобы они не сокращали решение и делали проверку корней;
- 4. Рассмотреть ситуации, приводящие к потере или появлению новых корней.
- 2. Невнимание к области определения.

Рекомендации:

- 1. Необходимо повторить понятие ОДЗ, правила решения систем уравнений (неравенств) и нахождения ОДЗ;
- 2. Предложить подборку заданий, которые нельзя решить без использования ОДЗ, например:
 - Решите неравенство

$$2^{\sqrt{10-x}} - (x-9)\lg(x-9) > 0;$$

– Решите уравнение

$$1 + \sqrt{x + 2\lg a} = \sqrt{x - 1}.$$

3. Плохое знание материала по данной теме: определения, понятия, алгоритмы и т. д.

Рекомендации: Данную проблему можно ликвидировать путем спланированного и систематичного повторения учителем основных ЗУН учащихся.

- 1) Необходимо повторить:
- определения логарифма,логарифмического уравнения и неравенства;
 - основных свойств логарифма;
- виды логарифмических уравнений и неравенств.

Пример 1. Решить уравнение

$$\log_4 x - 2 \cdot \log_{\frac{1}{4}} x = 3.$$

Решение. Данное уравнение преобразуем, используя свойства логарифма:

$$\log_4 x - 2 \cdot \log_{4^{-1}} x = 3,$$

$$\log_4 x - \frac{2}{-1} \cdot \log_4 x = 3,$$

$$\log_4 x + 2 \cdot \log_4 x = 3,$$

$$\log_4 x + \log_4 x^2 = 3.$$

$$\log_4 x^3 = 3,$$

$$\log_4 x^3 = \log_4 64,$$

$$x^3 = 64,$$

$$x = 4.$$

Проведем проверку: $\log_4 4^3 = 3$

$$\log_4 64 = 3 \implies 3 = 3.$$

Ответ: x = 4.

- 2) Повторить методы решения логарифмических уравнений и неравенств;
- 3) Проверку уровня ЗУН можно осуществить, если проводить контроль с помощью тестирования или устного опроса;

4) Рекомендуем проводить разбор основных

ошибок, которые могут возникнуть при решении уравнений (неравенств), предложив учащимся задания по типу «найди ошибку», например:

Пример 2. Найдите ошибку в решении уравнения

$$\lg(x(x+3)) + \lg \frac{x+3}{x} = 0,$$

$$\lg x + \lg(x+3) + \lg(x+3) - \lg x = 0,$$

$$2\lg(x+3) = 0, \quad \lg(x+3) = 0,$$

$$x+3 = 10^{0},$$

$$x+3 = 1,$$

$$x = -2.$$

(Комментарии к решению. Проверка показывает, что x = -2 не является корнем уравнения. И выходит, что у данного уравнения нет корней. Но это не так. В исходном уравнении x и x + 3 могут быть одновременно оба отрицательными или оба положительными, но при переходе к уравнению $\lg x +$ $\lg(x + 3) + \lg(x + 3) - \lg x = 0$ эти же выражения могут быть только положительными. То есть произошло сужение области определения и это привело к потере корня. Чтобы избежать потери корня, можно поступить следующим образом: перейдем в исходном уравнении от логарифма суммы к логарифму произведения. Возможно, в этом случае появление посторонних корней, но от них, путем подстановки, можно освободится. Можно поступить следующим образом: преобразуем исходное уравнение в уравнение вида

$$\lg(x(x+3)) = -\lg \frac{x+3}{x},$$
$$\lg(x(x+3)) = \lg \frac{x}{x+3},$$

$$\begin{cases} x(x+3) = \frac{x}{x+3}, \\ x(x+3) > 0; \end{cases}$$

$$\begin{cases} \begin{bmatrix} x = 0, \\ (x+3)^2 = 1, \\ x(x+3) > 0; \end{bmatrix} & \begin{cases} (x+3)^2 = 1 \\ x(x+3) > 0; \end{cases} \\ \begin{cases} \begin{bmatrix} x+3 = 1, \\ x+3 = -1, \\ x(x+3) > 0; \end{bmatrix} & \begin{cases} x = -2, \\ x = -4, \\ x(x+3) > 0; \end{cases} \end{cases} x = -4).$$

4. Ошибки, связанные с графическим решением уравнений.

Некоторые уравнения необходимо решать графически, если другими элементарными способами их решить нельзя.

Рекомендации:

- 1) Повторить теоретический материал по графическому методу решения уравнений;
- 2) Повторить свойства логарифмической функции и ее графика;
- 3) Рассмотреть примеры графического метода решения логарифмических уравнений.

Пример 3. Решите уравнение

$$3 - 2x = 3\log_2(x+2).$$

Решение. Построим графики функций

$$y = 3 - 2x$$
 и $y = 3\log_2(x + 2)$.

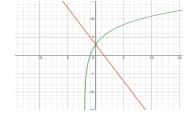


График этих функций имеет одну общую точку, абсцисса которой x = 0. Проверка показывает, что это точное значение корня.

Otbet: x = 0.

5. Ошибки, которые связаны с заменой переменной.

Повторить метод замены переменной:

- Сначала необходимо правильно ввести новую переменную и преобразовать данное уравнение или неравенство (заменяется только наименьшая из степеней.);
- затем найти корни получившегося «нового» уравнения;
- подставить эти корни в переменную, которую заменяли.

Пример 4. Решите уравнение $\lg^2\left(\frac{10}{x}\right) + \lg x = 7$.

Решение. Используем свойство (1.4)

$$(\lg 10 - \lg x)^2 + \lg x = 7,$$

$$(1 - \lg x)^2 + \lg x = 7,$$

Проведем замену: пусть $\lg x = t$, тогда $(1 - t)^2 + t = 7$,

$$1 - 2t + t^{2} + t - 7 = 0,$$

$$t^{2} - t - 6 = 0,$$

$$D = b^{2} - 4ac = 1 + 24 = 25, \quad \sqrt{D} = 5.$$

$$t_{1} = \frac{-b - \sqrt{D}}{2 \cdot a} = \frac{1 - 5}{2 \cdot 1} = \frac{-4}{2} = -2;$$

$$t_{2} = \frac{-b + \sqrt{D}}{2 \cdot a} = \frac{1 + 5}{2 \cdot 1} = \frac{6}{2} = 3.$$

Возвращаемся к переменной x:

$$\lg x = -2$$
, $x = 10^{-2}$, $x_1 = 0.01$;
 $\lg x = 3$, $x = 10^3$, $x_2 = 1000$.

Otbet: $x_1 = 0.01$, $x_2 = 1000$.