

Министерство науки и высшего образования Российской Федерации Сибирский федеральный университет

МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. ЧАСТЬ 1

Учебно-методическое пособие

Красноярск СФУ 2024

Рецензенты:

- С. Г. Мысливец, доктор физико-математических наук, профессор, заведующий кафедрой высшей и прикладной математики Сибирского федерального университета;
- *Т. Н. Шипина*, кандидат физико-математических наук, доцент, доцент кафедры математического анализа и дифференциальных уравнений Сибирского федерального университета.

М340 Математический анализ. Дифференциальные уравнения. Часть 1: учеб.-метод. пособие / сост.: А. П. Ляпин, С. С. Ахтамова. — Красноярск: Сиб. федер. ун-т, 2024. — 120 с.

Содержит основные разделы дисциплины «Дифференциальные уравнения» и предназначено для студентов, обучающихся по направлениям 01.03.01 «Математика», 01.03.02 «Прикладная математика и информатика», 02.03.01 «Математика и компьютерные науки», 44.03.05 «Педагогическое образование (с двумя профилями)», 21.05.03 «Технология геологической разведки».

Включает в себя лекционный курс с множеством прикладных наработок авторов, задания к практическим и самостоятельным работам, примерные контрольные для проверки знаний и умений. Приложения содержат основные понятия теории поля и таблицу интегралов.

Приведённые материалы способствуют формированию у студентов компетенций, определяемых $\Phi \Gamma OC$ BO.

УДК 517.9(07) ББК 22.16я73

Электронный вариант издания cm.: http://catalog.sfu-kras.ru

СОДЕРЖАНИЕ

Предисловие4
1. Теоретическая часть
1.1. Дифференциальные уравнения первого порядка. Общие понятия 8
1.2. Дифференциальные уравнения
с разделяющимися (разделёнными) переменными
1.3. Однородные дифференциальные уравнения первого порядка 18
1.4. Уравнения в полных дифференциалах
1.5. Линейные дифференциальные уравнения первого порядка 27
1.6. Уравнения Бернулли
1.7. Дифференциальные уравнения второго порядка. Общие понятия 32
1.8. Уравнения второго порядка, допускающие понижение порядка 34
1.9. Однородные линейные уравнения второго порядка
с постоянными коэффициентами
1.10. Неоднородные линейные уравнения второго порядка
с постоянными коэффициентами. Метод Эйлера
(вариации произвольных постоянных)41
1.11. Неоднородные линейные уравнения второго порядка
с постоянными коэффициентами. Метод Лагранжа
(определения неопределённых коэффициентов)
1.12. Нормальная система дифференциальных уравнений
2. Практическая часть
2.1. Практические задания для семинарских занятий
2.2. Итоговая контрольная работа
2.3. Итоговая расчётно-графическая работа
2.4. Образцы решения типичных задач,
предлагаемых студентам в качестве контрольной работы 67
Приложение А. Основные понятия теории поля
Приложение Б. Таблица интегралов
Список литературы

ПРЕДИСЛОВИЕ

Дифференциальные уравнения (далее — ДУ) начали изучаться создателями анализа бесконечно малых. Интерес к этой ветви анализа всё время усиливался главным образом потому, что многие проблемы механики и физики были сведены к рассмотрению ДУ. Методы отыскания решений ДУ углублялись и расширялись, причём объектами изучения являлись преимущественно те уравнения, решение которых было связано с решением прикладных вопросов.

Основными проблемами являлись получение решений с помощью квадратур и создание приближённых методов (получение решения в виде бесконечного ряда). Однако всё отчётливее выяснялось, что класс уравнений, решение которых сводится к квадратурам, весьма узок и что бесполезно пытаться свести к квадратурам решение всякого уравнения.

В связи с этим решение ДУ начинает идти по другому руслу. Коши устанавливает достаточные условия существования решения ДУ. Метод Коши открывает новую страницу в развитии анализа бесконечно малых, т. н. *общую теорию дифференциальных уравнений*. Созданная усилиями крупнейших математиков XIX и XX вв. теория представляет собой стройную цепь математических рассуждений, объектами которых являются весьма широкие классы ДУ. Целью изучения становится доказательство существования решений и исследование характера этих решений вне зависимости от возможности получения их с помощью квадратур.

Другая сторона общей теории ДУ, имеющая в математическом анализе исключительное значение, состоит в том, что решения ДУ, даже наиболее простых, образуют класс функций, неизмеримо более многообразный, чем, например, класс элементарных функций. Изучая особенности и свойства решения по самому уравнению, общая теория, не ограничиваясь качественными методами, позволяет установить и наилучшие способы приближения к решению (последовательные приближения).

Существенно и то, что ДУ, к решению которых сводятся проблемы современного естествознания, бывают настолько сложны, что представляется маловероятным получение решения с помощью конечного числа квадратур; в то же время общая теория позволяет описать эти решения, выявить их особенности, получить решение табличным способом.

Пособие составлено на основе опыта проведения занятий по курсу ДУ, в соответствии с программой курса для студентов, специализирующихся по математике. Построено так, чтобы выработать у обучаемых практические навыки решения и исследования ДУ и систем, описывающих эволюционные процессы в различных областях естествознания. Содержит большое количество примеров, подкреплённых теорией, что кажется нам очень полезным. Наличие иллюстраций повышает интерес студентов к предмету, выявляет роль ДУ как одного их самых мощных орудий познания действительности. За теоретической частью следует набор заданий для практических и контрольных работ.

Цели и задачи изучения дисциплины

Дисциплина «Дифференциальные уравнения» обеспечивает подготовку студентов по одной из базовых математических дисциплин, являющейся мощным орудием исследования многих задач естествознания и техники. Содержание дисциплины включает многочисленные приложения и является одним из фундаментов будущей практической и научной деятельности специалиста.

В процессе изучения дисциплины ставится задача ознакомления студентов с основными разделами курса с целью последующего применения полученных знаний для изучения дисциплин прикладного характера, базирующихся на математических знаниях.

Цель изучения дисциплины состоит в получении студентами прочных теоретических знаний и твёрдых практических навыков в области ДУ и их приложений. Курс «Дифференциальные уравнения» является базовым

для последующего изучения целого ряда прикладных дисциплин, таких как «Теория игр», «Теория нечётких множеств», «Методы оптимизации», «Моделирование» и др. Эти знания необходимы также для успешного усвоения специальных дисциплин в области экономики, менеджмента, статистики, бизнеса и информационных технологий.

Задача дисциплины – обучить студентов:

- методам решения основных типов ДУ 1-го порядка;
- методам решения линейных уравнений n-го порядка;
- методам решения систем линейных ДУ с постоянными и переменными коэффициентами.

Требования к уровню освоения содержания дисциплины

В результате изучения дисциплины студенты (слушатели) должны:

- *иметь представление* об основных типах задач, возникающих в теории ДУ;
 - *знать* основные понятия теории, методы решения ДУ и систем ДУ;
- *уметь* использовать аппарат ДУ в процессе проведения самостоятельных научно-практических исследований;
- *иметь навыки* применения стандартных алгоритмов нахождения решений типовых ДУ;
- *иметь представление* о современных направлениях развития ДУ и их приложениях.

1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Дифференциальное исчисление — раздел математического анализа, в котором изучаются понятия производной и дифференциала и способы их применения к исследованию функций. Производная функции по аргументу есть новая функция того же аргумента, имеющая глубокую связь с данной функцией. Изучение производной функции позволяет глубже исследовать данную функцию — например, установить, как она меняется с изменением аргумента, найти наибольшее и наименьшее значение, представить её приближённо многочленом и т. п.

Интегральное исчисление опирается на отыскание первообразной функции, т. е. функции, по отношению к которой данная функция есть производная. Операция интегрирования является базовой для получения решения ДУ.

В частности, действия дифференцирования и интегрирования имеют большое значение в исследовании кривых, т. к. мы можем, произведя эти действия по отношению к функциям, графики которых суть данные кривые, изучить последние всесторонним образом, имея перед собой лишь их уравнения, например: наклоны касательных к оси абсцисс, радиусы кривых, длины дуг, площади фигур и т. п.

Раздел анализа бесконечно малых под названием «Интегрирование дифференциальных уравнений» является дальнейшим углублением методов дифференциального и интегрального исчислений. Если в дифференциальном исчислении приходится по данной функции находить её производную, а в интегральном исчислении — по производной находить первообразную, то в излагаемом разделе анализа не будет дана ни функция, ни её производная, а будет дано соотношение между ними при помощи уравнения.

Например: равенство f(x) = f'(x) выражает соотношение, существующее между функцией и её производной, а именно – значение функ-

ции и её производной для любого значения аргумента равны между собой. Легко вспомнить, что такой функцией является e^x , ибо $\left(e^x\right)'=e^x$, она удовлетворяет уравнению y=y'.

Порядком дифференциального уравнения называется порядок наивысшей производной, входящей в уравнение. Например:

$$- ДУ y' - xy = e^x -$$
уравнение 1-го порядка;

$$-$$
 ДУ $y'' - P(x)y = 0$, где $P(x)$ — известная функция, — уравнение 2-го порядка;

$$-$$
 ДУ $y^{(9)} - xy'' = x^2 -$ уравнение 9-го порядка.

1.1. Дифференциальные уравнения первого порядка. Общие понятия

Определение 1. Обыкновенным дифференциальным уравнением 1-го порядка называется всякое соотношение между аргументом x, функцией y = f(x) и её первой производной y'(x), заданное уравнением вида F(x,y,y')=0, где алгебраически связаны независимая переменная x, искомая функция y = f(x) и её производная y'(x).

В пособии рассматриваются т. н. *обыкновенные дифференциальные уравнения*, т. е. уравнения, содержащие неизвестные функции лишь *одного* переменного и их производные. Кроме них существуют уравнения в *частных производных*, содержащие неизвестные функции *нескольких* переменных и их частные производные. Примером может служить уравнение $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = z$, где z – искомая функция переменных x и y.

Т. к. уравнения в частных производных в пособии рассматриваться не будут, то впредь под *дифференциальным уравнением* будут пониматься *обыкновенные дифференциальные уравнения*.

При изложении теории ДУ чаще всего рассматриваются уравнения, разрешённые относительно производной y'(x): f(x,y), или уравнения в т. н. симметричной форме: P(x,y)dx + Q(x,y)dy = 0.

Пример 1. Среди предложенных уравнений найти обыкновенные ДУ 1-го порядка:

1)
$$a\frac{dv}{dx} + b\frac{dv}{dy} = f(x, y, v);$$

$$2) \frac{dU}{dx} + y^2 = x^3;$$

3)
$$a \left(\frac{dy}{dx}\right)^2 + b \left(\frac{dy}{dx}\right) + cy = f(x);$$

4)
$$\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 3y = \sin x$$
;

5)
$$(x+y)dx + (x^2 + y^2)dy = 0$$
;

$$6) y' = \frac{x}{y} \ln \frac{x}{y}.$$

Ответ: 2); 3); 5); 6).

Определение 2. Функция $y = \varphi(x)$, удовлетворяющая данному ДУ при любом значении аргумента в некоторой области, называется *решением*, или *интегралом дифференциального уравнения*.

Нашей ближайшей задачей является отыскание такой функции, которая, будучи подставлена в заданное ДУ, удовлетворяла бы ему при любом значении аргумента в некоторой области. Такую функцию мы в дальнейшем будем называть решением.

Например:

1)
$$y = e^x$$
 есть решение ДУ $y' = y$;

2)
$$y = \sin x$$
, где $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$, если решение ДУ $y' - \sqrt{1 - y^2} = 0$.

Если вернёмся к первому уравнению, то увидим, что кроме найденного решения существуют и другие, например: $y = 2e^x$, $y = -3e^x$, $y = \sqrt{5}e^x$.

Все эти функции таковы, что значения их производных равны значениям функции для одного и того же значения аргумента, следовательно, они суть решения ДУ y'=y. Можно утвердить, что функция $y=Ce^x$, где C – любое действительное число, есть решение уравнения y'=y. Все приведённые выше решения можно рассматривать как функции аргумента x, полученные из Ce^x в результате подстановки вместо C, соответственно, $1, 2, -3, \sqrt{5}$.

Если принять C = 0, получится y = 0. Рассматривая y = 0 как функцию переменной x, имеющую значение, равное нулю при любом значении x, убеждаемся в том, что эта функция есть также решение этого уравнения, ибо и её производная равна нулю при любом значении x, а потому y' = y.

Определение 3. Частным решением дифференциального уравнения называется любая функция $y = \varphi(x)$, которая, будучи подставленной вместе со своей производной в уравнение, обращает его в тождество $F[x,\varphi(x),\varphi'(x)] \equiv 0$.

Любое ДУ имеет бесчисленное множество решений.

Определение 4. *Общим решением дифференциального уравнения* называется множество (совокупность) всех его частных решений.

Чаще всего общее решение ДУ может быть определено семейством функций, каждая из которых зависит от двух переменных -x и C; последней мы придаём то или иное действительное значение, когда речь идёт о *частном* решении уравнения. Поскольку в дальнейшем мы будем интересоваться получением общих решений лишь с целью получения *частных*, то очевидно, что мы каждый раз должны будем в общем решении фиксировать значение второй переменной, т. е. C.

Общее решение ДУ 1-го порядка является функцией, зависящей от одной произвольной постоянной C: $y = \varphi(x,c)$.

Если решение найдено в неявной форме $\varphi(x,y)=c$, то его называют общим интегралом дифференциального уравнения.

Не всегда общее решение ДУ является **явной** функцией аргумента и параметра. Например, пусть мы имеем ДУ $y' = -\frac{x}{y}$. Преобразуем его следующим образом:

$$yy' + x = 0 \Rightarrow \left(\frac{y^2}{2}\right)' + x = 0 \Rightarrow \left(\frac{y^2}{2}\right)' + \left(\frac{x^2}{2}\right)' = 0 \Rightarrow \left(x^2 + y^2\right)' = 0 \Rightarrow$$
$$\Rightarrow x^2 + y^2 = C \text{ или } x^2 + y^2 - C = 0.$$

Полученное равенство говорит о том, что y есть *неявная функция* аргумента x и параметра C (если C > 0).

Общее решение ДУ, записанное в неявном виде, часто называют *общим интегралом*. При действительном значении параметра мы получаем решение уравнения в неявном виде, которое называют *частным интегралом*.

Следовательно, $x^2 + y^2 - C = 0$ есть общий интеграл ДУ $y' = -\frac{x}{y}$, а $x^2 + y^2 - 1 = 0$ есть один из частных интегралов этого уравнения. Общее решение есть источник для получения бесчисленного множества частных решений.

Определение 5. Задача отыскания решения ДУ y' = f(x,y), удовлетворяющего начальным данным: $y = y_0$ при $x = x_0$, называется задачей Коши для уравнения 1-го порядка. Чаще задачу Коши записывают в виде системы: $\begin{cases} y' = f(x,y), \\ y(x_0) = x_0. \end{cases}$

Теорема 1 (существования и единственности решения задачи Коши). Если в уравнении y' = f(x, y) функция f(x, y) и её частная производная $\frac{\partial f}{\partial y}$ определены и непрерывны в некоторой области D пространства переменных x, y, то для любой внутренней точки $M(x_0, y_0)$ области D существует — и притом единственное — решение y = y(x), удовлетворяющее начальному условию $y(x_0) = y_0$.

С доказательством теоремы 1 можно ознакомиться в [10].

Упражнение 1. Задано уравнение y' = 2x и предложены четыре функции:

a)
$$y = x^2$$
; B) $y = x^2 + c$;

6)
$$y = 2$$
; $y = (x+c)^2$.

Какая из них является частным решением данного уравнения, а какая – общим?

Ответ: а) – частное решение; в) – общее решение.

С геометрической точки зрения:

- в системе координат при различных значениях произвольной постоянной c изображают множество кривых, которые называют **интегральными** кривыми;

- задача Коши состоит в отыскании той интегральной кривой, которая проходит через заданную точку $M_0(x_0,y_0)$;
- ДУ y' = f(x,y) в каждой точке области D определяет угловой коэффициент касательной к интегральной кривой, проходящей через эту точку, т. е. задаёт на плоскости **поле направлений**.

С механической точки зрения:

- ДУ $S' = f\left(S,t\right)$ математическая модель изменения скорости движения некоторого физического тела;
 - общее решение $S = \varphi(t,c)$ определяет общие законы движения тела;
- начальные условия $t=t_0$, $s=s_0$ содержат информацию о начальном состоянии тела в определённый момент времени;
- частное решение $S = \varphi(t)$ определяет такой закон движения, из которого можно получить конкретные качественные результаты о состоянии тела в любой момент времени.

В табл. 1 помещены типы ДУ 1-го порядка, которые будут подробно изучаться в пособии.

Если нам дано ДУ вида M(x,y)dx + N(x,y)dy = 0 без указания, какая из переменных является зависимой, то мы вольны выбрать в качестве таковой любую из них и записать уравнение в одном из двух видов: $\frac{dy}{dx} = -\frac{M}{N}$ или $-\frac{dy}{dx} = \frac{M}{N}$.

Может оказаться, что общее решение ДУ легко выражается в виде явной функции аргумента y и не выражается в виде явной функции аргумента x, что имеет большое значение при построении интегральных кривых.

Например, общий интеграл ДУ (x-xy)dy-ydx=0 есть $xe^y-Cy=0$. Выразить y через x мы не можем, между тем x через y выражается просто: $x=Cye^{-y}$.

Таблица 1
Типы ДУ 1-го порядка

Тип уравнения	Стандартная форма записи	Особенности	Метод решения
С разделяющимися переменными	$\varphi_1(x)\psi_2(y)dx =$ $= \varphi_2(x)\psi_1(y)dy$	При дифференциалах — произведения функций, зависящих одна от x , другая — от y	$\int \frac{\varphi_1}{\varphi_2} dx = \int \frac{\psi_1}{\psi_2} dy$
	$y' = f_1(x) \times f_2(y)$	Правая часть — произведение функций, зависящих одна от <i>x</i> , другая — от <i>y</i>	$\int \frac{dy}{f_2(y)} = \int f_1(x) dx + c$
Однородное	$y' = f\left(\frac{y}{x}\right)$	Правая часть — однородная функция 0-го порядка	Замена: $\frac{y}{x} = u(x)$
	$P(x,y) \times dx + $ $+Q(x,y) \times dy = 0$	P(x,y), Q(x,y) — однородные функции одинакового порядка	Замена: $y = u \times x$, $y' = u'x + u$
В полных дифференциалах	$P(x,y) \times dx + $ $+Q(x,y) \times dy = 0$	$\frac{\partial P}{\partial y} \equiv \frac{\partial Q}{\partial x}$	$u(x,y) = \int_{x_0}^{x} P(x,y)dx +$ $+ \int_{y_0}^{y} Q(x_0, y)dy;$ $u(x,y) = \int_{x_0}^{x} P(x, y_0)dx +$ $+ \int_{y_0}^{y} Q(x, y)dy$
Линейное	y' + P(x)y = Q(x)	Первой степени относительно y и $y_x^{'}$	$y = u(x) \times v(x),$ $y' = u' \times v + u \times v'$
	x' + P(y)x = Q(y)	Первой степени относительно x и $x_y^{'}$	$x = u(y) \times v(y),$ $x' = u' \times v + u \times v'$
Бернулли	$y' + P(x) \times y =$ $= Q(x) \times y^{n}$	Отличается от линейной правой части	Аналогично линейным

1.2. Дифференциальные уравнения с разделяющимися (разделёнными) переменными

Определение 6. ДУ 1-го порядка y' = f(x, y) называется уравнением c разделяющимися переменными, если его правая часть есть произведение функций, одна из которых зависит от переменной x, другая — от y: $y' = f_1(x) f_2(y)$.

Уравнение, записанное в симметричной форме P(x,y)dx + Q(x,y)dy = 0, является уравнением с разделяющимися переменными, если множители 4y'' + y' = 0 и Q(x,y) представляют собой произведение функций, из которых одна зависит только от переменной x, другая — от переменной y: $\phi_1(x) \times \phi_2(y) \times dx + \psi_1(x) \times \psi_2(y) \times dy = 0$.

Разделить переменные — значит преобразовать уравнение так, чтобы каждая переменная содержалась только в том слагаемом, которое содержит её дифференциал.

Для этого достаточно уравнение привести к форме: $\frac{dy}{dx} = f_1(x) \times f_2(y)$ и умножить обе его части на функцию $\frac{dx}{f_2(y)}$, в результате чего получится $\frac{dy}{f_2(y)} = f_1(x) dx$.

Полученное равенство можно проинтегрировать:

$$\int \frac{dy}{f_2(y)} = \int f_1(x) dx + c.$$

Уравнение $\phi_1(x) \times \phi_2(y) \times dx + \psi_1(x) \times \psi_2(y) \times dy = 0$ необходимо разделить почленно на выражение $\psi_1(x)\phi_2(x)$. Получаем равенство $\frac{\phi_1(x)}{\psi_1(x)} dx + \frac{\psi_2(y)}{\phi_2(y)} dy = 0$, которое можно проинтегрировать:

$$\int \frac{\varphi_1(x)}{\psi_1(x)} dx + \int \frac{\psi_2(y)}{\varphi_2(y)} dy = c.$$

Пример 2. Найти решение задачи Коши: $\begin{cases} y' + ay = b, \\ y(0) = 0 \end{cases}$ (a и b — константы).

- 1. Определим тип уравнения (см. табл. 1): y' = b ay уравнение с разделяющимися переменными, т. к. его правая часть зависит только от переменной y.
 - 2. Разделим переменные: $\frac{dy}{dx} = b ay$; $\frac{dy}{b ay} = dx$.
 - 3. Проинтегрируем полученное равенство:

$$-\frac{1}{a}\int \frac{d(b-ay)}{b-ay} = \int dx \implies -\frac{1}{a}\ln|b-ay| = x + c_1.$$

- 4. Упростим результат интегрирования и запишем общее решение уравнения: $\ln |b ay| = -ax ac_1 \Rightarrow b ay = e^{-ax ac_1} \Rightarrow y = \frac{b}{a} \frac{1}{a}e^{-ac_1}e^{-ax} \Rightarrow$ \Rightarrow пусть $\frac{1}{a}e^{-ac_1} = c \Rightarrow y = \frac{b}{a} + ce^{-ax}$.
- 5. Найдём значение произвольной постоянной: подставляя начальные условия x = 0, y = 0 в общее решение, находим $c = -\frac{b}{a}$.
 - 6. Запишем *ответ* частное решение уравнения: $y = \frac{b}{a} (1 e^{-ax})$.

Пример 3. Решить задачу Коши:
$$\begin{cases} (x^2 - 1)y' - 2xy = 0, \\ y(0) = 1. \end{cases}$$

- 1. Определим тип уравнения: $y' = \frac{2x}{x^2 1} \times y$ уравнение с разделяющимися переменными, где $f_1(x) = \frac{2x}{x^2 1}$, $f_2(y) = y$.
 - 2. Разделим переменные: $\frac{dy}{dx} = \frac{2x}{x^2 1}y$; $\frac{dy}{y} = \frac{2x}{x^2 1}dx$.

3. Проинтегрируем обе части равенства:

$$\int \frac{dy}{y} = \int \frac{2x}{x^2 - 1} dx \implies \ln|y| = \ln|x^2 - 1| + \ln|C_1|.$$

Для удобства преобразований постоянная переведена в логарифмическую форму.

4. Упростим результат интегрирования:

$$|y| = |c_1(x^2 - 1)| \implies y = \pm c_1(x^2 - 1), \text{ где } \pm c_1 = c \implies y = c(x^2 - 1).$$

- 5. Подставим начальные условия: при x = 0, y = 1 получаем c = -1.
- 6. Запишем *ответ*: $y = 1 x^2$.

Упражнение 2. Среди предложенных уравнений найти уравнения с разделяющимися (разделёнными) переменными:

- a) $(\sin x \times \ln y + \sin x) dx + (xy + y) dy = 0$;
- б) dN = kNdt, где k константа;
- в) y' + ay = b, где a и b константы;
- $\Gamma) ay' + bxy = C, C \neq 0;$
- д) $m\frac{dV}{dt} = mg kV^2$, где m и g константы.

Ответ: а); б); в); д).

Упражнение 3. Среди интегральных кривых, удовлетворяющих уравнению $y'\sin x = y\ln y$, найти ту, которая проходит через точку $M_0\bigg(\frac{\pi}{2},l\bigg)$.

Omsem: $y = e^{tg\frac{\pi}{2}}$.

Упражнение 4. Найти общее решение ДУ $y' + \sqrt{\frac{1-y^2}{1-x^2}} = 0$, применяя формулу $\arcsin \alpha + \arcsin \beta = \arcsin \left(\alpha \sqrt{1+\beta^2} + \beta \sqrt{1-\alpha^2} \right)$.

Omsem:
$$x\sqrt{1-y^2} + y\sqrt{1-x^2} = c$$
.

1.3. Однородные дифференциальные уравнения первого порядка

Определение 7. Функция $y = f(x_1, x_2, ..., x_n)$ называется *однородной функцией k-го порядка* однородности относительно переменных $x_1, x_2, ..., x_n$, если при любом $t \neq 0$ справедливо равенство

$$f(tx_1, tx_2,..., tx_n) = t^k \times f(x_1, x_2,..., x_n).$$

Пример 4. Определите порядок однородности функций:

а)
$$f(x,y) = \sqrt{x^2 + y^2}$$
 — функция 1-го порядка однородности, т. к.

$$f(tx,ty) = \sqrt{(tx)^2 + (ty)^2} = \sqrt{t^2x^2 + t^2y^2} = \sqrt{t^2(x^2 + y^2)} = |t|\sqrt{x^2 + y^2} = |t|f(x,y);$$

б)
$$f(x,y) = \cos \frac{x}{y}$$
 — функция 0-го порядка однородности, т. к.

$$f(tx,ty) = \cos\frac{tx}{ty} = \cos\frac{x}{y} = f(x,y);$$

в)
$$f(x,y) = xy^2 + x^3$$
 — функция 3-го порядка однородности, т. к.

$$f(tx,ty) = tx \times (ty)^2 + (tx)^3 = t^3xy^2 + t^3x^3 = t^3 \times (xy^2 + x^3) = t^3 \times f(x,y);$$

г)
$$f(x,y) = \frac{xy}{x^2 + 5y^2}$$
 – функция 0-го порядка однородности, т. к.

$$f(tx,ty) = \frac{tx \times ty}{(tx)^2 + 5(ty)^2} = \frac{t^2 \times xy}{t^2 \times x^2 + 5t^2 \times y^2} = \frac{xy}{x^2 + 5y^2} = f(x,y);$$

д) $f(x,y) = e^{-\frac{x^2}{y^2}}$ — функция 0-го порядка однородности, т. к. $f(tx,ty) = e^{-\frac{(tx)^2}{(ty)^2}} = e^{-\frac{t^2 \times x^2}{t^2 \times y^2}} = e^{-\frac{x^2}{y^2}} = f(x,y).$

Любую однородную функцию 0-го порядка можно представить как функцию отношения переменных $\frac{y}{x}$ или $\frac{x}{y}$.

Пример 5. Представьте функцию $f(x,y) = \frac{xy}{x^2 + 5y^2}$ как функцию отношения переменных $\frac{y}{x}$ или $\frac{x}{y}$.

$$f(x,y) = \frac{xy}{x^2 + 5y^2} = \frac{\frac{xy}{y^2}}{\frac{x^2 + 5y^2}{y^2}} = \frac{\frac{x}{y}}{\left(\frac{x}{y}\right)^2 + 5} = f\left(\frac{x}{y}\right)$$

или
$$f(x,y) = \frac{xy}{x^2 + 5y^2} = \frac{\frac{xy}{x^2}}{\frac{x^2 + 5y^2}{x^2}} = \frac{\frac{y}{x}}{1 + 5\left(\frac{y}{x}\right)^2} = f\left(\frac{y}{x}\right).$$

Определение 8. ДУ 1-го порядка y' = f(x,y) называется однородным дифференциальным уравнением, если его правая часть — однородная функция 0-го порядка, т. е. функция отношения $\left(\frac{y}{x}\right)$ (или $\left(\frac{x}{y}\right)$), или $y' = f\left(\frac{y}{x}\right)$.

Уравнение, записанное в симметричной форме P(x, y)dx + Q(x, y)dy = 0, является однородным уравнением, если функции P(x,y) и Q(x,y) – однородные функции одинакового порядка.

Пример 6. Среди предложенных уравнений указать однородные ДУ:

a)
$$xy' = y(\ln y - \ln x);$$

a)
$$xy' = y(\ln y - \ln x);$$
 B) $(x^2 + y^2 + xy)dx = x^2dy;$

6)
$$xy' - y - x \cot \frac{y}{x} = 0$$

6)
$$xy' - y - x\cot\frac{y}{x} = 0$$
; $\Gamma(x+y)dx + (x+y+2)dy = 0$.

a)
$$xy' = y(\ln y - \ln x)$$
.

- 1. Преобразуем ДУ. Разделим обе части уравнения на х. Для выражения в скобках применим свойство логарифмов: разность логарифмов равна логарифму от частного, получим: $y' = \frac{y}{x} \times \ln \frac{y}{x}$.
- 2. Правая часть преобразованного ДУ $f(x,y) = \frac{y}{x} \times \ln \frac{y}{x}$ является функцией 0-го порядка однородности, т. к. $f(tx,ty) = \frac{ty}{tx} \times \ln \frac{ty}{tx} = \frac{y}{x} \times \ln \frac{y}{x} = \frac{y}{x}$ = f(x, y), то ДУ является однородным.

6)
$$xy' - y - x \cot \frac{y}{x} = 0$$
.

- 1. Преобразуем ДУ. Разделим обе части уравнения на x, выразим y', получим: $y' = \frac{y}{r} + \cot \frac{y}{r}$.
- 2. Правая часть преобразованного ДУ $f(x,y) = \frac{y}{x} + \cot \frac{y}{x}$ является функцией 0-го порядка однородности, т. к. $f(tx,ty) = \frac{ty}{tx} + \cot \frac{ty}{tx} =$ $=\frac{y}{x}+\cot\frac{y}{x}=f\left(x,y\right)$, то ДУ является однородным.

6)
$$(x^2 + y^2 + xy)dx = x^2dy$$
.

- 1. Преобразуем ДУ. Разделим обе части уравнения на $x^2 dx$, выразим y', получим: $y' = 1 + \left(\frac{y}{x}\right)^2 + \frac{y}{x}$.
- 2. Правая часть преобразованного ДУ $f(x,y) = 1 + \left(\frac{y}{x}\right)^2 + \frac{y}{x}$ является функцией 0-го порядка однородности, т. к. $f(tx,ty) = 1 + \left(\frac{ty}{tx}\right)^2 + \frac{ty}{tx} = 1 + \left(\frac{y}{x}\right)^2 + \frac{y}{x} = f(x,y)$, то ДУ является однородным.
- 1. Преобразуем ДУ. Разделим обе части уравнения на (x+y+2)dx, выразим y', получим:

$$y' = \frac{x+y}{x+y+2} \implies y' = \frac{\frac{x+y}{x}}{\frac{x+y+2}{x}} \implies y' = \frac{1+\frac{y}{x}}{1+\frac{y}{x}+\frac{2}{x}}.$$

2. Правая часть преобразованного ДУ $f(x,y) = \frac{1 + \frac{y}{x}}{1 + \frac{y}{x} + \frac{2}{x}}$ не является

однородной функцией, т. к. $f\left(tx,ty\right) = \frac{1 + \frac{ty}{tx}}{1 + \frac{ty}{tx} + \frac{2}{tx}} = \frac{1 + \frac{y}{x}}{1 + \frac{y}{x} + \frac{2}{tx}} \neq f\left(x,y\right),$ то ДУ не является однородным.

Любое однородное уравнение сводится к уравнению с разделяющи- мися переменными подстановкой $\frac{y}{x} = u(x)$, откуда y = ux, y' = u'x + u.

Пример 7. Найти интегральную кривую уравнения $xy' = y(\ln y - \ln x)$, проходящую через точку M(1,1).

- 1. Определим тип уравнения (см. табл. 1).
- 1.1. Преобразуем ДУ, получим: $y' = \frac{y}{x} \times \ln \frac{y}{x}$.
- 1.2. Правая часть преобразованного ДУ $f(x,y) = \frac{y}{x} \times \ln \frac{y}{x}$ является функцией отношения $\frac{y}{x}$, то (см. табл. 1) ДУ является однородным.
 - 2. Запишем подстановку: $\frac{y}{x} = u(x)$, y = ux, y' = u'x + u.
 - 3. Осуществим подстановку в уравнение: $u'x + u = u \ln u$.
 - 4. Решим полученное уравнение с разделяющимися переменными.
 - 4.1. Разделим переменные: $u'x = u(\ln u 1);$ $u' = \frac{1}{x} \times u(\ln u 1);$

$$\frac{du}{dx} = \frac{1}{x} \times u(\ln u - 1); \ \frac{du}{u(\ln u - 1)} = \frac{dx}{x}.$$

4.2. Проинтегрируем обе части равенства:

$$\int \frac{du}{u(\ln u - 1)} = \int \frac{dx}{x} \implies \ln \left| \ln u - 1 \right| = \ln \left| cx \right|.$$

- 4.3. Упростим результат интегрирования: $\ln u 1 = cx \implies u = e^{cx+1}$.
- 5. Запишем общее решение (общий интеграл) уравнения:

$$\frac{y}{x} = e^{cx+1} \implies y = xe^{cx+1}$$
.

- 6. Найдём значение произвольной постоянной: при $x=1,\ y=1$ получаем $e^{c+1}=1 \Rightarrow C+1=0 \Rightarrow C=-1$.
 - 7. Запишем *ответ* частное решение уравнения: $y = xe^{1-x}$.

Упражнение 5. Найти решение задачи Коши: $\begin{cases} xy' - y - x \times \cot \frac{x}{y} = 0, \\ y(1) = 0. \end{cases}$

Omsem: $y = x \arccos \frac{1}{x}$.

Упражнение 6. Найти общее решение ДУ $(x^2 + y^2 + xy)dx = x^2dy$.

Omsem: $\arctan \frac{y}{x} = \ln |cx|$.

1.4. Уравнения в полных дифференциалах

Определение 9. Уравнение P(x,y)dx + Q(x,y)dy = 0 называется **уравнением в полных дифференциалах**, если его левая часть – полный дифференциал некоторой функции u(x,y), т. е. P(x,y)dx + Q(x,y)dy = du(x,y).

Равенство частных производных $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ является необходимым и достаточным условием существования полного дифференциала.

Общий интеграл уравнения в полных дифференциалах имеет вид u(x,y)=c, где функция u(x,y) находится по одной из формул:

$$u(x,y) = \int_{x_0}^{x} P(x,y)dx + \int_{y_0}^{y} Q(x_0,y)dy;$$

$$u(x,y) = \int_{x_0}^{x} P(x,y_0) dx + \int_{y_0}^{y} Q(x,y) dy$$
.

Пример 8. Указать уравнения в полных дифференциалах:

a)
$$(x + \sin y)dx + (x\cos y + y^2)dy = 0$$
;

6)
$$(2xy - 5y^2)dx = (x^2 - 10xy + 6y)dy$$
.

a)
$$(x + \sin y)dx + (x\cos y + y^2)dy = 0$$
.

- 1. ДУ записано в симметричной форме, где $P(x,y) = x + \sin y$, $Q(x,y) = x \cos y + y^2$.
 - 2. Найдём частные производные:

$$\frac{\partial P}{\partial y} = \frac{\partial (x + \sin y)}{\partial y} = \cos y; \quad \frac{\partial Q}{\partial x} = \frac{\partial (x \cos y + y^2)}{\partial x} = \cos y.$$

3. Сравним частные производные. Т. к. $\frac{\partial P}{\partial y} \equiv \frac{\partial Q}{\partial x}$, то уравнение является уравнением в полных дифференциалах.

6)
$$(2xy - 5y^2)dx = (x^2 - 10xy + 6y)dy$$
.

- 1. ДУ записано в симметричной форме, где $P(x,y) = 2xy 5y^2$, $Q(x,y) = x^2 10xy + 6y$.
 - 2. Найдём частные производные:

$$\frac{\partial P}{\partial y} = \frac{\partial \left(2xy - 5y^2\right)}{\partial y} = 2x - 10y; \quad \frac{\partial Q}{\partial x} = \frac{\partial \left(x^2 - 10xy + 6y\right)}{\partial x} = 2x - 10y.$$

3. Сравним частные производные. Т. к. $\frac{\partial P}{\partial y} \equiv \frac{\partial Q}{\partial x}$, то уравнение является уравнением в полных дифференциалах.

Пример 9. Найти общий интеграл ДУ
$$y' = \frac{e^y}{2y - xe^y}$$
.

- 1. Определим тип уравнения (табл. 1).
- 1.1. Запишем уравнение в симметричной форме: $\frac{dy}{dx} = \frac{e^{y}}{2y xe^{y}} \Rightarrow$ $\Rightarrow (2y - xe^{y})dy = e^{y}dx \Rightarrow e^{y}dx + (xe^{y} - 2y)dy = 0$, тогда $P(x, y) = e^{y}$, $O(x, y) = xe^{y} - 2y$.

1.2. Найдём частные производные:

$$\frac{\partial P}{\partial y} = \frac{\partial \left(e^{y}\right)}{\partial y} = e^{y}; \quad \frac{\partial Q}{\partial x} = \frac{\partial \left(xe^{y} - 2y\right)}{\partial x} = e^{y}.$$

- 1.3. Сравним частные производные. Т. к. $\frac{\partial P}{\partial y} \equiv \frac{\partial Q}{\partial x} = e^y$, то уравнение является уравнением в полных дифференциалах.
 - 2. Запишем формулу общего интеграла: u(x, y) = C.
 - 3. Выберем формулу для отыскания функции u(x, y):

$$u(x,y) = \int_{x_0}^{x} P(x,y_0) dx + \int_{y_0}^{y} Q(x,y) dy.$$

4. Найдём функцию u(x,y): $u(x,y) = \int_{x_0}^x e^{y_0} dx + \int_{y_0}^y \left(xe^y - 2y\right) dy =$ $= e^{y_0} x \Big|_{x_0}^x + xe^y \Big|_{y_0}^y - y^2 \Big|_{y_0}^y = e^{y_0} \left(x - x_0\right) + x \left(e^y - e^{y_0}\right) = xe^y - y^2 - x_0 e^{y_0} + y_0^2.$

5. Запишем общий интеграл уравнения: $xe^y - y^2 - x_0e^{y_0} + y_0^2 = C_1 \implies xe^y - y^2 = \underbrace{C_1 + x_0e^{y_0} - y_0^2}_{C} \implies xe^y - y^2 = C$.

Пример 10. Найти решение задачи Коши:
$$\begin{cases} (\ln y - 2x) dx + \left(\frac{x}{y} - 2y\right) dy = 0, \\ y(1) = 1. \end{cases}$$

- 1. Определим тип уравнения (табл. 1).
- 1.1. ДУ записано в симметричной форме, где $P(x,y) = \ln y 2x$, $Q(x,y) = \frac{x}{y} 2y \, .$
 - 1.2. Найдём частные производные:

$$\frac{\partial P}{\partial y} = \frac{\partial \left(\ln y - 2x\right)}{\partial y} = \frac{1}{y} - 2; \quad \frac{\partial Q}{\partial x} = \frac{\partial \left(\frac{x}{y} - 2y\right)}{\partial x} = \frac{1}{y} - 2.$$

25

1.3. Сравним частные производные. Т. к. $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} = \frac{1}{y} - 2$, то уравнение является уравнением в полных дифференциалах.

- 2. Запишем формулу общего интеграла: u(x, y) = C.
- 3. Выберем формулу для отыскания функции u(x, y):

$$u(x,y) = \int_{x_0}^{x} P(x,y_0) dx + \int_{y_0}^{y} Q(x,y) dy$$
.

4. Найдём функцию u(x, y):

$$u(x,y) = \int_{x_0}^{x} (\ln y_0 - 2x) dx + \int_{y_0}^{y} \left(\frac{x}{y} - 2y\right) dy = \left(x \ln y_0 - x^2\right) \Big|_{x_0}^{x} + x \ln y \Big|_{y_0}^{y} - y^2 \Big|_{y_0}^{y} =$$

$$= \ln y_0 \left(x - x_0\right) - \left(x^2 - x_0^2\right) + x \left(\ln y - \ln y_0\right) - \left(y^2 - y_0^2\right) =$$

$$= x \ln y - x^2 - y^2 - x_0 \ln y_0 + x_0^2 + y_0^2.$$

5. Запишем общий интеграл уравнения:

$$x \ln y - x^2 - y^2 - x_0 \ln y_0 + x_0^2 + y_0^2 = C_1 \implies$$

$$x \ln y - x^2 - y^2 = \underbrace{x_0 \ln y_0 - x_0^2 - y_0^2 + C_1}_{C} \implies x \ln y - x^2 - y^2 = C.$$

- 6. Найдём значение произвольной постоянной: при x=1, y=1 получим $\ln 1 1 1 = C \implies C = -2$.
 - 7. Запишем *ответ* частное решение уравнения: $x \ln y x^2 y^2 + 2 = 0$.

Упражнение 7. Найти общий интеграл ДУ

$$\left(\frac{\sin 2x}{y} + x\right) dx + \left(y - \frac{\sin^2 x}{y^2}\right) dy = 0.$$

Omsem:
$$\frac{\sin^2 x}{y} + \frac{x^2 + y^2}{2} = C$$
.

Упражнение 8. Найти уравнение, которое является одновременно однородным, и в полных дифференциалах:

a)
$$(2x-y)dx + (2y-x)dy = 0$$
;

6)
$$(2x^3 - xy^2)dx + (2y^3 - x^2y)dy = 0;$$

B)
$$\left(y\sin\frac{y}{x} - x\right)dx + x\sin\frac{y}{x}dy = 0$$
.

1.5. Линейные дифференциальные уравнения первого порядка

Определение 10. *Линейным дифференциальным уравнением* 1-го порядка называется уравнение 1-го порядка, линейное относительно функции и её производной:

а)
$$y' + P(x)y = Q(x)$$
 – уравнение, линейное относительно $y(x)$;

б)
$$x' + P(y)x = Q(y)$$
 – уравнение, линейное относительно $x(y)$.

Здесь P(x), Q(y) — заданные функции или константы. При Q = 0 уравнение называется однородным, при $Q \neq 0$ — неоднородным.

Пример 11. Определить тип указанных уравнений:

а)
$$(x^2+1)y'-xy-x^3-x=0$$
 – линейное относительно $y(x)$; приво-

дится к стандартной форме
$$y' - \frac{x}{x^2 + 1} \times y = x$$
, где $P(x) = -\frac{x}{x^2 + 1}$, $Q(x) = x$;

б)
$$y' = \frac{1}{x \cos y + \sin 2y}$$
 – линейное относительно $x(y)$; подстановкой

$$y_x' = \frac{1}{x_y}$$
 приводится к стандартной форме $x' - x\cos y = \sin 2y$, где $P(y) =$

$$=-\cos y$$
, $Q(y)=\sin 2y$.

Однородные линейные уравнения (Q=0) могут быть решены разделением переменных. Неоднородные линейные уравнения можно свести к последовательности двух уравнений с разделяющимися переменными подстановкой $y=u(x)\times v(x),\ y=u'(x)\times v(x)+u(x)\times v'(x).$

Пример 12. Решить задачу Коши:
$$\begin{cases} xy' - y - x^3 = 0, \\ y(1) = 0. \end{cases}$$

- 1. Определим тип уравнения (табл. 1). Приведём к стандартной форме записи делением на x, получим: $y' \frac{1}{x}y = x^2$ линейное уравнение относительно функции y(x).
 - 2. Запишем подстановку: $y = u(x) \times v(x)$, $y = u'(x) \times v(x) + u(x) \times v'(x)$.
 - 3. Осуществим подстановку в данное уравнение: $u'v + uv' \frac{1}{x}uv = x^2$.
- 4. Запишем последовательность уравнений относительно функций u(x) и v(x). Подстановка y=uv позволяет одну из функций сомножителей выбрать произвольно. Поступим так: сгруппируем первый и третий (можно второй и третий) члены уравнения $\left(u'-\frac{1}{x}u\right)v+uv'=x^2$.

Выбираем функцию u(x) так, чтобы она обращала в нуль скобку: $u' - \frac{1}{r}u = 0 \, .$

Тогда функция v(x) должна удовлетворять условию: $uv' = x^2$.

Вывод: получили последовательность уравнений: $\begin{bmatrix} u' - \frac{1}{x}u = 0, \\ uv' = x^2. \end{bmatrix}$

5. Найдём функции u(x) и v(x).

Каждое из уравнений последовательности (п. 4) является уравнением с разделяющимися переменными: $u' - \frac{1}{x}u = 0 \Rightarrow \int \frac{du}{u} = \int \frac{dx}{x} \Rightarrow \ln|u| = \ln|x| \Rightarrow u = x \Rightarrow uv' = x^2 \Rightarrow xv' = x^2 \Rightarrow v' = x \Rightarrow v = \int x dx \Rightarrow v = \frac{x^2}{2} + C$.

- 6. Запишем общее решение ДУ: $y = uv = x \left(\frac{x^2}{2} + C \right)$.
- 7. Найдём значение произвольной постоянной. При x=1, y=0 получаем C=-0.5.
 - 8. Запишем *ответ* частное решение уравнения: $y = 0.5x^3 0.5x$.

Пример 13. Найти общее решение ДУ y' + ay = bx.

- 1. Определим тип ДУ (табл. 1): y' + ay = bx уравнение, линейное относительно функции y(x).
 - 2. Запишем подстановку: $y = u(x) \times v(x)$, $y = u'(x) \times v(x) + u(x) \times v'(x)$.
 - 3. Осуществим подстановку в данное уравнение: $u'v + uv' + a \times uv = bx$.
- 4. Запишем последовательность уравнений относительно функций u(x) и v(x). Сгруппируем первый и третий члены уравнения: $(u'+au)\times v+uv'=bx$.

Выберем функцию u(x) так, чтобы она обращала в нуль скобку, получим последовательность уравнений: $\begin{bmatrix} u' + a \times u = 0, \\ u \times v' = bx. \end{bmatrix}$

5. Найдём функции u(x) и v(x).

Каждое из уравнений последовательности (п. 4) является уравнением с разделяющимися переменными: $u' + au = 0 \Rightarrow \int \frac{du}{u} = -a \times \int dx \Rightarrow$ $\Rightarrow \ln|u| = -ax \Rightarrow u = e^{-ax} \Rightarrow e^{-ax} \times v' = bx \Rightarrow v' = bxe^{ax} \Rightarrow \frac{dv}{dx} = bxe^{ax} \Rightarrow$

$$\Rightarrow \int dv = b \times \int xe^{ax} dx \Rightarrow v = \frac{b}{a}xe^{ax} - \frac{b}{a^2}e^{ax} + c.$$

6. Запишем общее решение ДУ: $y = uv = ce^{-ax} + \frac{b}{a}x - \frac{b}{a^2}$.

Упражнение 9. Среди предложенных уравнений найти линейные:

a)
$$y'\cos x - y\sin x - 2x = 0$$
; B) $m\frac{dV}{dt} = P - kV$;

6)
$$2xy' - y^2 + x = 0$$
; $\qquad \qquad \Gamma) \ \ y' = \frac{y}{3x - y^2}$.

Ответ: а) линейное относительно y(x); б) не является линейным; в) линейное относительно V(t); г) линейное относительно x(y).

Упражнение 10. Решить задачу Коши: $\begin{cases} y'\cos x - y\sin x - 2x = 0, \\ y(0) = 1. \end{cases}$

Omsem:
$$y = \frac{x^2 + 1}{\cos x}$$
.

Упражнение 11. Найти общее решение ДУ $y' + \frac{x}{1-x^2}y = 1$.

Omsem:
$$y = \sqrt{1 - x^2} \left(c + \arcsin x \right)$$
.

Упражнение 12. Найти общее решение ДУ $y' = \frac{y}{3x - y^2}$.

Omeem:
$$x = y^2 + cy^3$$
.

1.6. Уравнения Бернулли

Определение 11. *Уравнением Бернулли* называется уравнение вида $y' + P(x) \times y = Q(x) \times y^n$ или $x' + P(y) \times x = Q(y) \times x^n$.

Уравнение Бернулли отличается от линейного уравнения правой частью и сводится к последовательности уравнений с разделяющимися переменными по той же схеме, что и линейное, подстановкой:

$$y = u(x) \times v(x),$$

$$y' = u'(x) \times v(x) + u(x) \times v'(x)$$

ИЛИ

$$x = u(y) \times v(y),$$

$$x' = u'(y) \times v(y) + u(y) \times v'(y).$$

Пример 14. Найти общее решение ДУ $xy' - 4y - x^2\sqrt{y} = 0$.

- 1. Определим тип ДУ (табл. 1): $y' \frac{4}{x} \times y = x \times y^{\frac{1}{2}}$ уравнение Бернулли, где $P(x) = -\frac{4}{x}$, Q(x) = x, $n = \frac{1}{2}$.
 - 2. Запишем подстановку: $y = u(x) \times v(x)$, $y = u'(x) \times v(x) + u(x) \times v'(x)$.
 - 3. Осуществим подстановку в данное уравнение:

$$u' \times v + u \times v' - \frac{4}{x} \times uv = x\sqrt{uv} .$$

4. Запишем последовательность уравнений относительно функций u(x) и v(x). Сгруппируем первый и третий члены уравнения:

$$\left(u' - \frac{4}{x} \times u\right) \times v + u \times v' = x\sqrt{uv}.$$

Выберем функцию u(x) так, чтобы она обращала в нуль скобку,

получим последовательность уравнений: $\begin{bmatrix} u - \frac{4}{x} \times u = 0, \\ u \times v' = x \sqrt{uv}. \end{bmatrix}$

5. Найдём функции u(x) и v(x). Каждое из уравнений последовательности (п. 4) является уравнением с разделяющимися переменными:

$$u' - \frac{4}{x} \times u = 0 \implies \frac{du}{dx} = \frac{4u}{x} \implies \int \frac{du}{u} = 4 \int \frac{dx}{x} \implies \ln|u| = \ln x^4 \implies u = x^4 \implies$$

$$\Rightarrow u \times v' = x\sqrt{uv} \implies x^4 \times v' = x\sqrt{x^4 \times v} \implies \int \frac{dv}{\sqrt{v}} = \int \frac{dx}{x} \implies 2\sqrt{v} = \ln|x| + C \implies v = \left(\ln\sqrt{x} + C\right)^2.$$

6. Запишем общее решение ДУ:
$$y = u \times v \implies y = x^4 \left(\ln \sqrt{x} + c \right)^2$$
.

Упражнение 13. Найти решение задачи Коши для ДУ $y' + 2y = y^2 \times e^x$, удовлетворяющее начальным условиям $y|_{x=0} = 1$.

Ombem:
$$y = e^{-x}$$
.

Упражнение 14. Среди уравнений указать то, которое одновременно является однородным, линейным и может быть представлено в полных дифференциалах:

a)
$$x^2y' + 2xy + x^2 = 0$$
; 6) $xy' = -y + x$.

6)
$$xy' = -y + x$$

Ответ: а); б).

Упражнение 15. Среди уравнений указать то, которое одновременно является уравнением с разделяющимися переменными, в полных дифференциалах и линейным:

a)
$$xy' + y = 0$$
;

$$6) xy' - y = 0.$$

Ответ: а).

1.7. Дифференциальные уравнения второго порядка. Общие понятия

Определение 12. Обыкновенным дифференциальным уравнением **2-го порядка** называется уравнение вида F(x, y, y', y'') = 0, связывающее независимую переменную x, искомую функцию y и её производные 1 и 2-го порядков.

Определение 13. Частным решением дифференциального уравнения 2-го порядка называется дважды дифференцируемая функция $y = \varphi(x)$, которая, будучи подставленной в уравнение вместе со своими производными, обращает его в тождество $F[x, \varphi(x), \varphi'(x), \varphi''(x)] \equiv 0$.

ДУ 2-го порядка, как и любое ДУ, имеет бесчисленное множество решений. Множество всех решений уравнения 2-го порядка называется его *общим решением*, которое чаще всего может быть представлено семейством функций, содержащих две произвольные постоянные: $y = \varphi(x, C_1, C_2)$.

Задача Коши для уравнения 2-го порядка есть задача о нахождении частного решения ДУ F(x,y,y',y'')=0, удовлетворяющего начальным условиям $y\Big|_{x=x_0}=y_0$, $y'\Big|_{x=x_0}=y'_0$, где x_0 , y_0 , y'_0 — заданные числовые значения. Чаще записывают так: $\begin{cases} F(x,y,y',y'')=0,\\ y(x_0)=y_0,\ y'(x_0)=y'_0. \end{cases}$

С геометрической точки зрения задача Коши состоит в том, чтобы среди множества интегральных кривых $y = \varphi(x, C_1, C_2)$ найти ту, которая проходит через заданную точку $M_0\big(x_0, y_0\big)$ в заданном направлении $y'\big(x_0\big)$

Разрешим уравнение F(x,y,y',y'')=0 относительно второй производной y''=f(x,y,y').

Теорема 1 (существования и единственности решения задачи Коши). Если в уравнении y'' = f(x, y, y') функция f(x, y, y') и её частные производные $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial y'}$ определены и непрерывны в некоторой области D пространства переменных x, y, y', то для любой внутренней точки

 $M_0(x_0, y_0, y_0')$ области D существует – и притом единственное – решение y = y(x), удовлетворяющее начальным условиям $y(x_0) = y_0$, $y'(x_0) = y_0'$.

С доказательством теоремы 1 через сведение уравнения y'' = f(x, y, y') заменой z(x) = y' к нормальной системе обыкновенных ДУ можно ознакомиться в [10].

Если найдено общее решение $y=\varphi(x,C_1,C_2)$ уравнения $y''=f\left(x,y,y'\right)$, то для решения задачи Коши постоянные C_1 и C_2 находятся из системы уравнений: $\begin{cases} y_0=\varphi(x,C_1,C_2),\\ y_0'=\varphi(x_0,C_1,C_2). \end{cases}$

1.8. Уравнения второго порядка, допускающие понижение порядка

В табл. 2 приведены типы уравнений 2-го порядка, допускающие понижение порядка.

Таблица 2 Типы уравнений 2-го порядка, допускающие понижение порядка

Тип уравнения	Особенности	Метод решения	
	Разрешено относительно	Последовательное интегрирование:	
I тип:	второй производной.	$y' = \int f(x)dx + C_1,$	
y'' = f(x)	Правая часть зависит		
	только от х	$y = \int \left[\int f(x) dx + C_1 \right] dx + C_2$	
II тип:	Отсутствует явно	Подстановка:	
F(x,y',y'')=0	функция у	$y' = P(x), \ y'' = P'(x)$	
III тип:	Отсутствует явно	Подстановка:	
F(y,y',y'')=0	независимая переменная х	$y' = P(y), y'' = P'(y) \times P(y)$	

Пример 15. Найти решение задачи Коши для ДУ $y'' = \sin^2 2x$, удовлетворяющее начальным условиям $y\big|_{x=0} = 0$, $y'\big|_{x=0} = 1$.

- 1. Определим тип уравнения: $y'' = \sin^2 2x$ уравнение, допускающее понижение порядка, I типа (табл. 2). Решается последовательным интегрированием (п. 2, 3).
 - 2. Проинтегрируем обе части уравнения:

$$y' = \int \sin^2 2x dx \implies y' = \frac{1}{2} \int (1 - \cos 4x) dx \implies y' = \frac{1}{2} \left(x - \frac{1}{4} \sin 4x \right) + C_1.$$

3. Проинтегрируем обе части полученного уравнения:

$$y = \int \left(\frac{1}{2}\left(x - \frac{1}{4}\sin 4x\right) + C_1\right) dx \implies y = \frac{x^2}{4} + \frac{1}{32}\cos 4x + C_1x + C_2.$$

4. Найдём произвольные постоянные: $\begin{cases} y = \frac{x^2}{4} + \frac{\cos 4x}{32} + C_1x + C_2, \\ y' = \frac{1}{2} \left(x - \frac{1}{4} \sin 4x \right) + C_1. \end{cases}$

При
$$x=0$$
, $y=0$, $y'=1$ получаем $C_2=-\frac{1}{32}$; $C_1=1$.

5. Запишем ответ – частное решение уравнения:

$$y = \frac{x^2}{4} + \frac{1}{32}\cos 4x + x - \frac{1}{32}$$
.

Пример 16. Найти решение задачи Коши: $\begin{cases} xy'' = y' \ln \frac{y'}{x}, \\ y(1) = e, \ y'(1) = e. \end{cases}$

- 1. Определим тип уравнения: $xy'' = y' \ln \frac{y'}{x}$ уравнение, допускающее понижение порядка, II типа (табл. 2).
 - 2. Запишем подстановку: y' = P(x), y'' = P'(x).
 - 3. Осуществим подстановку в данное уравнение: $x \times P' = P \times \ln \frac{P}{x}$.

- 4. Решим полученное ДУ 1-го порядка.
- 4.1. Определим тип уравнения по табл. 1: $P' = \frac{P}{x} \times \ln \frac{P}{x}$ однородное уравнение.
 - 4.2. Запишем подстановку: $\frac{P}{x} = u(x)$, $P = u \times x$, $P' = u' \times x + u$.
 - 4.3. Осуществим подстановку в уравнение: $u' \times x + u = u \times \ln u$.
 - 4.4. Решим полученное уравнение с разделяющимися переменными:

$$u' = (u \times \ln u - u) \times \frac{1}{x} \implies \int \frac{du}{u(\ln u - 1)} = \int \frac{dx}{x} \implies \ln|\ln u - 1| = \ln|C_1 x| \implies \ln u - 1 = C_1 x \implies u = e^{C_1 \times x + 1}.$$

- 4.5. Запишем общее решение: $P = ux = xe^{C_1x+1} \implies y' = xe^{C_1x+1}$.
- 5. Определим значение произвольной постоянной C_1 . При решении уравнений II и III типа с начальными условиями рекомендуется определять произвольную постоянную сразу, как она появилась. При x=1, y'=e имеем $C_1=0$, тогда y'=ex.
- 6. Решим уравнение, полученное в п. 5: y' = ex уравнение с разделяющимися переменными. $\int dy = e \int x dx \implies y = e \times \frac{x^2}{2} + C_2 \ .$
- 7. Определим значение произвольной постоянной C_2 . При $x\!=\!1$, $y\!=\!e$ имеем $C_2\!=\!\frac{e}{2}$.
 - 8. Запишем *ответ* частное решение уравнения: $y = \frac{e}{2} \times (x^2 + 1)$.

Пример 17. Найти решение задачи Коши:
$$\begin{cases} 2yy'' - (y')^2 - 1 = 0, \\ y(0) = 1, \ y'(0) = 0. \end{cases}$$

1. Определим тип уравнения: $2yy'' - (y')^2 - 1 = 0$ – уравнение, допускающее понижение, III типа (табл. 2).

- 2. Запишем подстановку: y' = P(y), $y'' = P(y) \times P'(y)$.
- 3. Осуществим подстановку в уравнение: $2y \times P \times P' P^2 1 = 0$.
- 4. Решим уравнение, полученное в п. 3: $2yPP P^2 1 = 0$ уравнение с разделяющимися переменными. $\int \frac{2PdP}{P^2 + 1} = \int \frac{dy}{y} \implies \ln(P^2 + 1) = \ln C_1 y \implies$

$$\Rightarrow P^2 + 1 = C_1 y \Rightarrow P^2 = C_1 y - 1 \Rightarrow (y')^2 = C_1 y - 1 \Rightarrow y' = \sqrt{C_1 y - 1}.$$

- 5. Найдём значение произвольной постоянной C_1 . При $y=1,\ y'=0$ имеем $C_1=1$. Тогда $y'=\sqrt{y-1}$.
- 6. Решим уравнение, полученное в п. 5: $y' = \sqrt{y-1}$ уравнение с разделяющимися переменными. $\int \frac{dy}{\sqrt{y-1}} = \int dx \implies 2\sqrt{y-1} = x + C_2 \implies$

$$\Rightarrow y = \frac{1}{4} (x + C_2)^2 + 1.$$

- 7. Определим значение произвольной постоянной C_2 . При $x\!=\!0$, $y\!=\!1$ имеем $C_2\!=\!0$.
 - 8. Запишем *ответ* частное решение уравнения: $y = \frac{x^2}{4} + 1$.

Упражнение 16. Найти решение задачи Коши: $\begin{cases} y'' = e^{-ax}, \\ y(0) = 0, \ y'(0) = 1. \end{cases}$

Omsem:
$$y = \frac{1}{a^2}e^{-ax} - \frac{1}{a}x - \frac{1}{a^2}$$
.

Упражнение 17. Решить задачу Коши: $\begin{cases} y'' = y + x, \\ y(0) = 1, \ y'(0) = 0. \end{cases}$

Omsem:
$$y = -\frac{x^2}{2} - x + e^x$$
.

Упражнение 18. Решить задачу Коши:
$$\begin{cases} yy'' + (y')^2 = 0, \\ y(0) = 1, \ y'(0) = 1. \end{cases}$$

Omeem: $y^2 = 2x + 1$.

1.9. Однородные линейные уравнения второго порядка с постоянными коэффициентами

Определение 14. Однородное линейное уравнение 2-го порядка c постоянными коэффициентами имеет вид: y'' + py' + qy = 0, где $p,\ q$ — заданные числа. Структура решения уравнения определяется следующими теоремами.

Теорема 2. Всякое линейное однородное уравнение 2-го порядка $y = y_1(x)$,

имеет систему двух линейно независимых частных решений: $y = y_2(x)$,

$$\frac{y_1(x)}{y_2(x)} \neq \text{const.}$$

Эта система носит название фундаментальной системы решений.

Теорема 3 (о структуре решения). *Общее решение линейного одно- родного уравнения 2-го порядка* есть линейная комбинация частных решений его фундаментальной системы: $y = C_1 y_1 + C_2 y_2$.

Для отыскания фундаментальной системы решений составляют т. н. характеристическое уравнение: $k^2 + pk + q = 0$.

В зависимости от вида корней (вещественные различные, вещественные равные, комплексные) фундаментальная система решений имеет различный вид (табл. 3).

Виды фундаментальной системы решений линейного однородного уравнения

Дискриминант характеристиче- ского уравнения	Корни характеристиче- ского уравнения	Фундаментальная система частных решений	Общее решение
D > 0	Вещественные различные $k_1 \neq k_2$	$y_1 = e^{k_1 x},$ $y_2 = e^{k_2 x}$	$y = C_1 e^{k_1 x} + C_2 e^{k_2 x}$
D = 0	Вещественные равные $k_1 = k_2 = k$	$y_1 = e^{kx},$ $y_2 = xe^{kx}$	$y = e^{kx} \left(C_1 + C_2 x \right)$
D<0	Комплексные $k_{1,2} = \alpha \pm \beta \times i$	$y_1 = e^{\alpha x} \cos \beta x,$ $y_2 = e^{\alpha x} \sin \beta x$	$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$

Пример 18. Найти решение задачи Коши:
$$\begin{cases} y'' - 13y' - 30y = 0, \\ y(0) = 6, \ y'(0) = 5. \end{cases}$$

- 1. Определим тип уравнения: y'' 13y' 30y = 0 линейное, однородное, 2-го порядка, с постоянными коэффициентами.
 - 2. Запишем формулу общего решения: $y = C_1 y_1 + C_2 y_2$.
- 3. Составим и решим характеристическое уравнение: $k^2 13k 30 = 0$, $k_1 = -2$, $k_2 = 15$ (корни вещественные различные).
 - 4. Запишем фундаментальную систему решений: $k_1 = -2 \implies y' = e^{-2x}, \\ k_2 = 15 \implies y_2 = e^{15x}.$
 - 5. Запишем общее решение уравнения: $y = C_1 e^{-2x} + C_2 e^{15x}$.
 - 6. Найдём значения произвольных постоянных C_1 и C_2 :

$$\begin{cases} y = C_1 e^{-2x} + C_2 e^{15x}, \\ y' = -2C_1 e^{-2x} + 15C_2 e^{15x}. \end{cases}$$

При
$$x=0$$
, $y=6$, $y'=5$ получаем
$$\begin{cases} C_1+C_2=6,\\ -2e_1+15C_2=5, \end{cases} \Rightarrow C_1=5, \ C_2=1.$$

- 7. Запишем *ответ* частное решение уравнения: $y = 5e^{-2x} + e^{15x}$. **Пример 19**. Найти общее решение ДУ y'' 14y' + 49y = 0.
- 1. Определим тип уравнения: y'' 14y' + 49y = 0 линейное, однородное, 2-го порядка, с постоянными коэффициентами.
 - 2. Запишем формулу общего решения: $y = C_1 y_1 + C_2 y_2$.
- 3. Составим и решим характеристическое уравнение: $k^2 14k + 49 = 0$, $k_1 = k_2 = 7$ (корни вещественные равные).
 - 4. Запишем фундаментальную систему решений: $y_1 = e^{7x}$, $y_2 = xe^{7x}$.
 - 5. Запишем общее решение уравнения: $y = C_1 e^{7x} + C_2 x e^{7x},$ $y = e^{7x} \left(C_1 + C_2 x \right).$

Пример 20. Найти решение задачи Коши: $\begin{cases} y'' + 4y' + 13y = 0, \\ y(0) = 6, \ y'(0) = 0. \end{cases}$

- 1. Определим тип уравнения: y'' + 4y' + 13y = 0 линейное, однородное, 2-го порядка, с постоянными коэффициентами.
 - 2. Запишем формулу общего решения: $y = C_1 y_1 + C_2 y_2$.
- 3. Составим и решим характеристическое уравнение: $k^2 + 4k + 13 = 0$, $k_{1,2} = -2 \pm 3i$ (корни комплексные).
 - 4. Запишем фундаментальную систему решений: $y_1 = e^{-2x} \cos 3x,$ $y_2 = e^{-2x} \sin 3x.$
 - 5. Запишем общее решение уравнения: $y = C_1 e^{-2x} \cos 3x + C_2 e^{-2x} \sin 3x,$ $y = e^{-2x} \left(C_1 \cos 3x + C_2 \sin 3x \right).$
 - 6. Найдём значения произвольных постоянных C_1 и C_2 :

$$\begin{cases} y = e^{-2x} (C_1 \cos 3x + C_2 \sin 3x), \\ y' = e^{-2x} [(-2C_1 + 3C_2)\cos 3x + (-2C_2 - 3C_1)\sin 3x]. \end{cases}$$

При
$$x=0,\ y=6,\ y'=0$$
 получаем
$$\begin{cases} C_1=6,\\ 3C_2-2C=0, \end{cases} \Rightarrow C_1=6,\ C_2=4.$$

7. Запишем *ответ* – частное решение уравнения:

$$y = e^{-2x} (6\cos 3x + 4\sin 3x).$$

Упражнение 19. Найти общее решение ДУ:

a)
$$y'' + 5y' + 6y = 0$$
;

$$\Gamma$$
) $y'' - 25y = 0$;

6)
$$y'' + 25y = 0$$
;

д)
$$y'' + 4y' + 20y = 0$$
;

B)
$$y'' + 6y' + 9y = 0$$
;

e)
$$y'' + 25y' = 0$$
.

Ответ:

a)
$$y = C_1 e^{-2x} + C_2 e^{-3x}$$
;

$$\Gamma) y = C_1 \cos 5x + C_2 \sin 5x;$$

6)
$$y = e^{-3x} (C_1 + C_2 x);$$

д)
$$y = C_1 e^{-5x} + C_2 e^{5x}$$
;

B)
$$y = e^{-2x} (C_1 \cos 4x + C_2 \sin 4x)$$
; e) $y = C_1 + C_2 e^{-25x}$.

e)
$$y = C_1 + C_2 e^{-25x}$$

1.10. Неоднородные линейные уравнения второго порядка с постоянными коэффициентами.

Метод Эйлера (вариации произвольных постоянных)

Определение 15. Неоднородное линейное уравнение 2-го порядка с постоянными коэффициентами имеет вид:

$$y'' + py' + gy = f(x), \tag{1}$$

где $f(x) \neq 0$.

Теорема 4 (о структуре решения). Общее решение линейного неоднородного уравнения 2-го порядка равно сумме общего решения (\bar{y}) соответствующего однородного уравнения и какого-либо частного решения (y^*) данного неоднородного уравнения [1]: $y = \overline{y} + y^*$.

Рассмотрим метод Эйлера. Он является общим, универсальным методом в том смысле, что может применяться для уравнений с произвольной правой частью. Суть его в следующем. Сначала записывают общее решение (\bar{y}) соответствующего однородного уравнения y'' + py' + gy = 0: $\bar{y} = C_1 y_1 + C_2 y_2$. Затем конструируют функцию $y^* = C_1(x) y_1 + C_2(x) y_2$, где $C_1(x)$, $C_2(x)$ – теперь уже функции переменной x.

Доказано, что функция y^* является решением уравнения (1), если функции $C_1(x)$ и $C_2(x)$ удовлетворяют системе ДУ

$$\begin{cases} C_1'(x) \times y_1 + C_2'(x) \times y_2 = 0, \\ C_1'(x) \times y' + C_2'(x) \times y_2' = f(x). \end{cases}$$

Пример 21. Найти общее решение ДУ $y'' + y' = \frac{1}{1 + e^x}$.

- 1. Определим тип уравнения: $y'' + y' = \frac{1}{1 + e^x}$ линейное, неоднородное, 2-го порядка, с постоянными коэффициентами.
 - 2. Запишем формулу общего решения: $y = \overline{y} + y^*$.
- 3. Найдём общее решение однородного уравнения (\bar{y}): $y'' + y' = 0 \Rightarrow k^2 + k = 0 \Rightarrow k_1 = 0, \ k_2 = -1 \Rightarrow \bar{y} = C_1 + C_2 e^{-x}$.
- 4. Сконструируем формулу частного решения уравнения (y^*): $y^* = C_1(x) + C_2(x)e^{-x}$.
 - 5. Запишем систему уравнений относительно функций $C_1(x)$, $C_2(x)$:

$$\begin{cases} C_1'(x) + C_2'(x) \times e^{-x} = 0, \\ C_1'(x) \times 0 - C_2'(x) \times e^x = \frac{1}{1 + e^x}. \end{cases}$$

6. Решим систему, составленную в п. 5:

$$\Delta = \begin{vmatrix} 1 & e^{-x} \\ 0 & -e^{-x} \end{vmatrix} = -e^{-x} \Rightarrow \Delta C_1'(x) = \begin{vmatrix} 0 & e^{-x} \\ \frac{1}{1+e^x} & -e^{-x} \end{vmatrix} = -\frac{e^2}{1+e^x} \Rightarrow \Delta C_2'(x) = \begin{vmatrix} 1 & 0 \\ 0 & \frac{1}{1+e^x} \end{vmatrix} = \frac{1}{1+e^x};$$

$$C_1'(x) = \frac{\Delta C_1'}{\Delta} = \frac{1}{1+e^x} \Rightarrow C_1(x) = \int \frac{dx}{1+e^x} = x - \ln(1+e^x);$$

$$C_2'(x) = \frac{\Delta C_2'}{\Delta} = -\frac{e^x}{1+e^x} \Rightarrow C_2(x) = -\int \frac{e^x}{1+e^x} dx = -\ln(1+e^x).$$

7. Запишем частное решение (y *): $y * = x - \ln(1 + e^x) - e^{-x} \ln(1 + e^x) \Rightarrow$ $\Rightarrow y * = x - (1 + e^{-x}) \ln(1 + e^x).$

8. Запишем ответ – общее решение уравнения:

$$y = \overline{y} + y^* \implies y = C_1 + C_2 e^{-x} + x - (1 + e^{-x}) \ln(1 + e^{x}).$$

Упражнение 20. Найти общее решение ДУ $y'' + y = \frac{1}{\cos x}$.

Omsem:
$$y = \left(\frac{x^2 \ln x}{2} - \frac{3}{4}x^2 + C_1 + C_2 x\right)e^{-2x}$$
.

1.11. Неоднородные линейные уравнения второго порядка с постоянными коэффициентами.

Метод Лагранжа (определения неопределённых коэффициентов)

Продолжаем рассматривать методы решения уравнения (1), где

$$f(x) = e^{\alpha x} \left[P_k(x) \cos \beta x + Q_m(x) \sin \beta x \right], \tag{2}$$

где $P_k(x)$, $Q_m(x)$ – заданные многочлены одной или разных степеней.

Метод Эйлера вариации произвольных постоянных, с помощью которого отыскиваются частные решения y^* , связан с интегрированием функций $C_1'(x)$ и $C_2'(x)$, что представляет определённые практические

трудности. Имеются случаи, когда частное решение y^* можно найти проще, не прибегая к интегрированию. Речь пойдёт о широко применяемых в науке ДУ, у которых правая часть имеет вид (2).

Поставим в соответствие уравнению (1) с правой частью (2) число $\alpha \pm \beta_i$ и назовем его основным параметром уравнения.

Сконструируем функцию $y^* = e^{\alpha x} [M_n(x) \cos \beta x + N_n(x) \sin \beta x] \times x^r$, где $M_n(x)$, $N_n(x)$ — многочлены степени $n = \max\{k,m\}$, записанные пока с неопределёнными коэффициентами (отсюда название метода); r — кратность корня характеристического уравнения, равного параметру $\alpha \pm \beta_i$.

Как видим, конструкция функции y^* определяется как формой правой части уравнения — функцией f(x), так и видом левой его части — корнями характеристического уравнения. Доказано, что при соответствующем выборе значений коэффициентов для многочленов $M_n(x)$, $N_n(x)$ функция y^* является частным решением уравнения (1).

В табл. 4 приведены различные формы правой части f(x) (частные случаи $\alpha = 0$, $\beta = 0$, $\alpha = \beta = 0$) и соответствующие решения уравнения y^* .

Таблица 4 Решения неоднородных уравнений

№	Правая $^{ m часть}$ уравнения $f\left(x ight)$	Основной параметр $\alpha \pm \beta_i$	Сравнение параметра с корня- ми характеристи- ческого уравнения	Конструкция частного решения у*
1	2	3	4	5
1	A	$\alpha = \beta_i = 0$ $\alpha \pm \beta_i = 0$	0 не является корнем $0-1$ -кратный корень $0-2$ -кратный корень	B Bx Bx^2

Окончание табл. 4

1	2	3	4	5
2	$P_n(x)$	$\alpha = \beta_i = 0$ $\alpha \pm \beta_i = 0$	0 не является корнем $0-1$ -кратный корень $0-2$ -кратный корень	$M_n(x)$ $M_n(x) \times x$ $M_n(x) \times x^2$
3	$Ae^{\alpha x}$	$\beta = 0$ $\alpha \pm \beta_i = \alpha$	α не является корнем $\alpha-1$ -кратный корень $\alpha-2$ -кратный корень	$Be^{\alpha x}$ $Be^{\alpha x} \times x$ $Be^{\alpha x} \times x^{2}$
4	$P_n(x)e^{\alpha x}$	$\beta = 0$ $\alpha \pm \beta_i = \alpha$	α не является корнем $\alpha-1$ -кратный корень $\alpha-2$ -кратный корень	$M_n(x)e^{\alpha x}$ $M_n(x)e^{\alpha x} \times x$ $M_n(x)e^{\alpha x} \times x^2$
5	$A\cos\beta x + B\sin\beta x$	$\alpha = 0$ $\alpha \pm \beta_i = \beta$	$\pm eta_i$ не являются корнями $\pm eta_i$ – корни	$C\cos\beta x + D\sin\beta x$ $(C\cos\beta x + D\sin\beta x) \times x$
6	$P_x(x)\cos\beta x + Q_m(x)\sin\beta x$	$\alpha = 0$ $\alpha \pm \beta_i = \beta$	$\pm eta_i$ не являются корнями $\pm eta_i$ – корни	$M_n(x)\cos\beta x + N_n(x)\sin\beta x$ $(M_n(x)\cos\beta x + N_n(x)\sin\beta x) \times x$ $n = \max\{k, m\}$
7	$(A\cos\beta x + + B\sin\beta x)e^{\alpha x}$	$\alpha \pm \beta_i$	$lpha\pmeta_i$ не являются корнями $lpha\pmeta_i$ – корни	$(C\cos\beta x + D\sin\beta x)e^{\alpha x}$ $(C\cos\beta x + D\sin\beta x)e^{\alpha x} \times x$
8	$(P_x(x)\cos\beta x + Q_m(x)\sin\beta x) \times e^{\alpha x}$	$\alpha \pm \beta_i$	$lpha \pm eta_i$ не являются корнями $lpha \pm eta_i$ – корни	$(M_n(x)\cos\beta x + N_n(x)\sin\beta x)e^{\alpha x} + N_n(x)\cos\beta x + N_n(x)\sin\beta x)e^{\alpha x} \times x$ $(M_n(x)\sin\beta x)e^{\alpha x} \times x$ $n = \max\{k, m\}$

Пример 22. Найти общее решение ДУ $y'' + 4y' = x^3 + 1$.

- 1. Определим тип уравнения: $y'' + 4y' = x^3 + 1$ линейное, неоднородное, 2-го порядка, с постоянными коэффициентами, со специальной правой частью.
 - 2. Запишем формулу общего решения: $y = \overline{y} + y^*$.
- 3. Найдём общее решение однородного уравнения (\bar{y}) : $y'' + 4y' = 0 \implies k^2 + 4k = 0 \implies k_1 = 0, \ k_2 = -4 \implies \bar{y} = C_1 + C_2 e^{-4x}$.
 - 4. Проведём анализ правой части уравнения:

$$x^3 + 1 = e^{0x} ((x^3 + 1)\cos 0x + 0\sin x), \ \alpha = 0, \ \beta = 0, \ f(x) = P_3(x).$$

- 5. Вычислим основной параметр уравнения: $\alpha \pm \beta_i = 0$.
- 6. Определим параметр r. Основной параметр $\alpha \pm \beta_i = 0$ является однократным корнем характеристического уравнения, следовательно, r = 1.
 - 7. Сконструируем частное решение (y^*):

$$y^* = M_3(x)x = (Ax^3 + Bx^2 + Cx + D)x$$
.

- 8. Вычислим коэффициенты функции y^* .
- 8.1. Найдём производные от функции y^* :

$$y^* = Ax^4 + Bx^3 + Cx^2 + Dx,$$

$$(y^*)' = 4Ax^3 + 3Bx^2 + 2Cx + D,$$

$$(y^*)'' = 12Ax^2 + 6Bx + 2C.$$

8.2. Поставим функцию y^* и её производные в данное уравнение:

$$16Ax^{3} + (12A + 12B)x^{2} + (6B + 8C)x + (2C + 4D) = x^{3} + 1.$$

8.3. Приравняем коэффициенты при подобных членах левой

и правой части равенства:
$$\begin{cases} 16A = 1, \\ 12A + 12B = 0, \\ 6B + 8C = 0, \\ 2C + 4D = 1. \end{cases}$$

8.4. Решим систему:
$$A = \frac{1}{16}$$
, $B = -\frac{1}{16}$, $C = \frac{3}{14}$, $D = \frac{29}{128}$.

9. Запишем частное решение (
$$y*$$
): $y* = \frac{1}{16}x^4 - \frac{1}{16}x^3 + \frac{3}{64}x^2 + \frac{29}{128}x$.

10. Запишем *ответ* – общее решение уравнения:

$$y = C_1 + C_2 e^{-4x} + \frac{1}{16} x^4 - \frac{1}{16} x^3 + \frac{3}{64} x^2 + \frac{29}{128} x$$
.

Пример 23. Найти решение задачи Коши:
$$\begin{cases} y'' + y' = 8\sin x, \\ y(0) = 1, \ y'(0) = 0. \end{cases}$$

- 1. $y'' + y = 8\sin x$ линейное, неоднородное, 2-го порядка, с постоянными коэффициентами, со специальной правой частью.
 - 2. Запишем формулу общего решения: $y = \overline{y} + y^*$.
- 3. Найдём общее решение однородного уравнения (\bar{y}) : $y'' + y = 0 \Rightarrow$ $\Rightarrow k^2 + 1 = 0 \Rightarrow k_{1,2} = \pm i \Rightarrow \bar{y} = C_1 \cos x + C_2 \sin x$.
 - 4. Проведём анализ правой части уравнения:

$$8\sin x = e^{0x} (0\cos x + 8\sin x), \ \alpha = 0, \ \beta = 1, \ f(x) = P_0\cos x + Q_0\sin x.$$

- 5. Вычислим основной параметр уравнения: $\alpha \pm \beta_i = \pm i$.
- 6. Определим параметр r. Значения основного параметра $\pm i$ являются однократными корнями характеристического уравнения, следовательно, r=1.
 - 7. Сконструируем частное решение: $y^* = (A\cos x + B\sin x)x$.
 - 8. Вычислим коэффициенты функции y^* .
 - 8.1. Найдём производные от функции y^* :

$$y^* = Ax\cos x + Bx\sin x,$$

$$(y^*)' = (A + Bx)\cos x + (B - Ax)\sin x,$$

$$(y^*)'' = (2B - Ax)\cos x + (2A - 8x)\sin x.$$

8.2. Поставим функцию y^* и её производные в данное уравнение: $2B\cos x - 2A\sin x = 8\sin x$. Приравняем коэффициенты при подобных членах левой и правой части равенства: $\begin{cases} 2B = 0, \\ -2A = 8 \end{cases}$

- 8.4. Решим систему: A = -4, B = 0.
- 9. Запишем частное решение уравнения: $y^* = -4x\cos x$.
- 10. Запишем общее решение уравнения: $y = (C_1 4x)\cos x + C_2\sin x$.
- 11. Найдём значения произвольных постоянных C_1 и C_2 :

$$\begin{cases} y = (C_1 - 4x)\cos x + C_2\sin x, \\ y' = (C_2 - 4)\cos x + (4x - C_1)\sin x. \end{cases}$$

При x = 0, y = 1, y' = 0 имеем $C_1 = 1$, $C_2 = 4$.

12. Запишем решение задачи Коши: $y = (1 - 4x)\cos x + 4\sin x$.

Упражнение 21. Подобрать для данных неоднородных уравнений частное решение y^* в форме, соответствующей табл. 4:

a)
$$y'' + 2y = 2x$$
;

$$r) y'' + 4y = 3\sin 2x;$$

6)
$$y + 2y' = x^3 + x$$
;

д)
$$y'' - 8y' + 16y = xe^{4x}$$
;

B)
$$y'' + 2y' = 3e^{-2x}$$
;

e)
$$y'' - 6y' + 34y = e^{3x} \cos 5x$$
.

Ответ:

a)
$$y^* = Ax + B$$
;

r)
$$y^* = (A\cos 2x + B\sin 2x)x$$
;

б)
$$y^* = Ax^4 + Bx^3 + Cx^2 + Dx$$
; д) $y^* = (Ax^3 + Bx^2)e^{4x}$;

д)
$$y^* = (Ax^3 + Bx^2)e^{4x}$$

B)
$$y^* = Axe^{-2x}$$
;

e)
$$y^* = (Ax\cos 5x + Bx\sin 5x)e^{3x}$$
.

Упражнение 22. Найти общее решение ДУ y'' - 2y' + 2y = 2x.

Omsem: $y = (C_1 \cos x + C_2 \sin x)e^x + x + 1$.

Упражнение 23. Найти решение задачи Коши: $\begin{cases} y'' + 4y' + 4y = xe^{-2x}, \\ y(0) = 0, \ y'(0) = 1. \end{cases}$

Omsem:
$$y = \left(x + \frac{1}{6}x^3\right)e^{-2x}$$
.

1.12. Нормальная система дифференциальных уравнений

Определение 16. *Нормальная система дифференциальных урав*нений 2-го порядка в случае двух неизвестных функций имеет вид:

$$\begin{cases} \frac{dy}{dx} = f_1(x, y, z), \\ \frac{dz}{dx} = f_2(x, y, z), \end{cases}$$

где x – независимая переменная; y = y(x), z = z(x) – искомые функции. Порядок системы определяется числом входящих в неё уравнений.

Определение 17. Совокупность функций $y = \varphi_1(x)$, $z = \varphi_2(x)$, определённых и непрерывно дифференцируемых в некотором интервале (a;b), называется *решением системы* в этом интервале, если она обращает

в тождество каждое уравнение системы:
$$\begin{cases} \frac{d\varphi_1}{dx} = f_1\Big[x, \varphi_1\big(x\big), \varphi_2\big(x\big)\Big], \\ \frac{d\varphi_2}{dx} = f_2\Big[x, \varphi_1\big(x\big), \varphi_2\big(x\big)\Big]. \end{cases}$$

Общее решение нормальной системы ДУ 2-го порядка содержит две произвольные постоянные: $y = \varphi_1(x, C_1, C_2), z = \varphi_2(x, C_1, C_2).$

Решение, удовлетворяющее начальным условиям $y\Big|_{x=x_0}=y_0$, $z\Big|_{x=x_0}=z_0$, называется **частным решением** системы.

Пример 24. Найти общее решение системы ДУ
$$\begin{cases} \frac{dz}{dt} = y, \\ \frac{dy}{dt} = 2y. \end{cases}$$

Имеем простейший случай, когда одно из уравнений — второе — содержит только одну искомую функцию. Решим его: $\int \frac{dy}{y} = 2 \int dt \Rightarrow$ $\Rightarrow \ln|y| = 2t + \ln|C_1| \Rightarrow y = C_1 e^{2t}.$

Подставим полученную функцию в первое уравнение системы: $\frac{dz}{dt} = C_1 e^{2t} \implies \int dz = C_1 \int e^{2t} dt \implies z = \frac{C_1}{2} e^{2t} + C_2 \; .$

Omsem:
$$\begin{cases} z = \frac{C_1}{2}e^{2t} + C_2, \\ y = C_1e^{2t}. \end{cases}$$

В общем случае нормальная система 2-го порядка решается сведением её к равносильному уравнению 2-го порядка относительно одной из искомых функций.

Пример 25. Найти частное решение системы ДУ
$$\begin{cases} \frac{dy}{dx} = \frac{1}{z - x}, \ y(0) = 1, \\ \frac{dz}{dx} = 1 - \frac{1}{y}, \ z(0) = 2. \end{cases}$$

1. Продифференцируем одно из уравнений системы.

Например, если мы хотим свести систему к равносильному её уравнению 2-го порядка относительно функции *у*, необходимо продифференцировать первое уравнение системы:

$$\frac{d^2y}{dx^2} = \frac{1}{\left(z - x\right)^2} \left(1 - \frac{dz}{dx}\right). \tag{a}$$

2. Выразим из данной системы функцию z и её производную $\frac{dz}{dx}$:

$$z = x + \frac{1}{\frac{dy}{dx}},$$

$$\frac{dz}{dx} = 1 - \frac{1}{y}.$$
(6)

3. Подставим функцию z и её производную $\frac{dz}{dx}$ в уравнение (a):

$$\frac{d^2y}{dx^2} = \frac{1}{y} \left(\frac{dy}{dx}\right)^2.$$

4. Решим уравнение (a): $y'' = \frac{1}{y} (y')^2$ — уравнение 2-го порядка, допускающее понижение подстановкой $y' = p(y) \Rightarrow y'' = p'(y) p(y)$;

$$ypp'=p^2 \implies \int \frac{dp}{p} = \int \frac{dy}{y} \implies p = C_1 y \; ; \; y' = C_1 y \implies \int \frac{dy}{y} = C_1 \int dx \implies y = C_2 e^{C_1 x} \; .$$

5. Найдём функцию z по формуле (б): $z = x + \frac{1}{y'} = x + \frac{1}{C_1 C_2 e^{C_1 x}} =$

$$= x + \frac{1}{C_1 C_2} e^{-C_1 x}.$$

- 6. Запишем общее решение системы: $y = C_2 e^{C_1 x}$, $z = x + \frac{1}{C_1 C_2} e^{-C_1 x}$.
- 7. Найдём произвольные постоянные. При x = 0, y = 1, z = 2 имеем

$$\begin{cases} C_2 = 1, \\ \frac{1}{C_1 C_2} = 2, \implies C_1 = \frac{1}{2}, C_2 = 1. \end{cases}$$

8. Запишем *ответ*:
$$\begin{cases} y = e^{\frac{1}{2}x}, \\ z = x + 2e^{-\frac{1}{2}x}. \end{cases}$$

Упражнение 24. Найти общее решение системы ДУ
$$\begin{cases} \frac{dy}{dx} = -2y, \\ \frac{dz}{dx} = z. \end{cases}$$

Omeem:
$$\begin{cases} y = C_1 e^{-2x}, \\ z = C_2 e^x. \end{cases}$$

2. ПРАКТИЧЕСКАЯ ЧАСТЬ

2.1. Практические задания для семинарских занятий

2.1.1. Дифференциальные уравнения с разделяющимися переменными

1	$4xdx - 3ydy = 3x^2ydy - 2xy^2dx$	2	$y(4+e^x)dy - e^x dx = 0$
3	$6xdx - 6ydy = 2x^2ydy - 3xy^2dy$	4	$\left(1+e^x\right)y'=ye^x$
5	$y \ln y + xy' = 0$	6	$y' = 10^{x+y}$
7	$\left(e^{3x} + 7\right)dy + ye^{3x}dx = 0$	8	$y(1+\ln y) + xy' = 0$
9	$y' = e^{x-y}$	10	$e^{y}\left(1+x^{2}\right)dy-2x\left(1+e^{y}\right)dx=0$

2.1.2. Однородные дифференциальные уравнения первого порядка

1	$xy' = y^2 + 4xy + 2x^2$	2	$y' = \sqrt{1 - \frac{y^2}{x^2}} + \frac{y}{x}$
3	$y' = \frac{x + 8y}{8x + y}$	4	$xy' = \frac{3y^3 + 2x^2y}{2y^2 + x^2}$
5	$xyy' = x^2 - y^2$	6	$xy' = \sqrt{2x^2 + y^2} + y$
7	$y' = \frac{2y + x}{2x - y}$	8	$xy' + y \ln \frac{2y}{x} = 0$
9	$xy' = y + 3x\sin\frac{y}{x}$	10	$xy\frac{dy}{dx} + x^2 = 2y^2$

2.1.3. Задача Коши для линейного дифференциального уравнения первого порядка, уравнение Бернулли, удовлетворяющее заданному начальному условию

1	$y' - \frac{y}{x} = x^2$, $y(1) = 0$; $\frac{dy}{dx} + xy = (1+x)e^x y^2$, $y(0) = 1$	2	$y' + \frac{1}{x}y - \sin x = 0, \ y(\pi) = \frac{1}{\pi};$ $2y' + y\cos x =$ $= y^{-1}\cos x(1 + \sin x), \ y(0) = 1$
3	$y' - \cot x = 2x \sin x, \ y\left(\frac{\pi}{2}\right) = 0;$ $xy' + y = 2y^2 \ln x, \ y(1) = \frac{1}{2}$	4	$\frac{dy}{dx} = -\frac{y}{x} + x^2, \ y(1\pi) = 1;$ $y + 4x^3y = 4y^2e^{4x}(1 - x^3), \ y(0) = -1$
5	$y' + y\cos x = \frac{1}{2}\sin 2x, \ y(0) = 0;$ $2(xy' + y) = xy^2, \ y(1) = 2$	6	$y' = -\frac{y}{x} + x^{2}, \ y(1) = 1;$ $y' + 4x^{3}y = 4y^{2}e^{4x}(1 - x^{3}), \ y(0) = -1$
7	$y' + y \tan x = \cos^2 x$, $y\left(\frac{\pi}{4}\right) = \frac{1}{2}$; $\frac{dy}{dx} + 4x^3y = 4\left(1 + x^3\right)e^{-4}y^2$, $y(0) = 1$	8	$y' + \frac{2xy}{1+x^2} = \frac{2x^2}{1+x^2} + x^2, \ y(0) = \frac{2}{3};$ $3\frac{dy}{dx} + 2xy = \frac{2x}{y^2}e^{-2x^2}, \ y(0) = -1$
9	$\frac{dy}{dx} - \frac{y}{x} = x \sin x^{4}, \ y\left(\frac{\pi}{2}\right) = 1;$ $3(xy' + y) = y^{2} \ln x, \ y(1) = 3$	10	$\frac{dy}{dx} = \frac{2x - 5}{x^2} y + 5, \ y(2) = 4;$ $2x \frac{dy}{dx} - 3y = -(5x^2 + 3)y^3, \ y(1) = \frac{1}{2}$

2.1.4. Уравнения в полных дифференциалах

1	$3x^2e^ydx + \left(x^3e^y - 1\right)dy = 0$	2	$(3x^{2}y + 2y + 3)dx + + (x^{3} + 2x + 3y^{2})dy = 0$
3	$(1+y^2\sin 2x)dx - 2y\cos^2 xdy = 0$	4	$2x\left(1+\sqrt{x^2-y}\right)dx-\sqrt{x^2-y}dy=0$
5	$(3x^{2} + 4y^{2})dx + (8xy + e^{y})dy = 0$	6	$(\sin 2x - 2\cos(x+y))dx2\cos(x+y)dy = 0$
7	$e^{-y}dx - \left(2y + xe^{-y}\right)dy = 0$	8	$3x^{2} \left(1 + \ln y\right) dy = \left(2y - \frac{x^{3}}{y}\right) dx$
9	$\left(y^2 + \frac{y}{\cos^2 x}\right)dx + $ $+ (2xy + \tan x)dy = 0$	10	$\left(xe^x + \frac{y}{x^2}\right)dx = \frac{1}{x}dy$

2.1.5. Определение типа дифференциального уравнения

1	$x(1+y^2) + y(1+x^2)\frac{dy}{dx} = 0$	2	$xy^2y' = x^2 + y^3$
3	$(2xy+3y^2)dx +$ $+(x^2+6xy-3y^2)dy = 0$	4	$\left(x^2 + y^2\right)y' = 2xy$
5	$\frac{dy}{dx}2xy = 3x^2 - 2x^4$	6	$\int_{y}^{x} dx + \left(y^3 + \ln x\right) dy = 0$
7	$xy' - y = x \tan \frac{y}{x}$	8	$\left(xy + e^x\right)dx - xdy = 0$
9	$x\frac{dt}{dx} + t = 1$	10	$y' + 2\frac{y}{x} = x^4 e^x y^3$

2.1.6. Задачи Коши для уравнений, допускающих понижение порядка

	$y''' = 3 + \cos^2 2x$, $y(0) = 0$, y'(0) = 2, $y''(0) = 1$		$y''' = \frac{\sin x}{3\cos^3 x}, \ y(0) = -3,$ $y'(0) = 0, \ y''(0) = 7$
	$y''' = 2\frac{\cos x}{\sin^3 x}, \ y\left(\frac{\pi}{2}\right) = 0,$ $y'\left(\frac{\pi}{2}\right) = -1, \ y''\left(\frac{\pi}{2}\right) = 2$	4	$y'' = \frac{\sin^3 x - 4}{\sin^2 x},$ $y\left(\frac{\pi}{2}\right) = 0, \ y'\left(\frac{\pi}{2}\right) = \frac{4}{\pi}$
5	$y''' = \frac{1}{(x-1)^3}, \ y(2) = 3,$ $y'(2) = 2, \ y''(2) = \frac{1}{2}$	6	$y'' = 27e^{3x} + 120x^3, y(0) = 3,$ y'(0) = -1, y''(0) = 2
7	$y'' = xe^{-x},$ y(0) = 3, y'(0) = -2	8	$y'' = x \ln x,$ y(1) = 1, y'(1) = 0
9	$y'' = x \cos 3x,$ y(0) = 0, y'(0) = 1	10	$y'' = \frac{\ln x}{x^2},$ $y(e) = 4, y'(e) = \frac{2}{e}$

2.1.7. Дифференциальные уравнения, не содержащие искомой функции

1	$\left(1+x^2\right)y''-xy'=0$	2	$x^2y'' + xy' = 1$
3	$y'''x \ln x = y''$	4	$y''' \cot 2x + 2y'' = 0$
5	xy''' + y'' = 1	6	$y''' \tan x = 2y''$
7	$2xy''' = y^{(2)}$	8	xy''' + y'' + x = 0
9	xy''' + y'' = x + 1	10	$(1+\sin x)y''' = y''\cos x$

2.1.8. Уравнения, не содержащие явно независимой переменной (задача Коши)

1	$4y^{3}y'' = y^{4},$ $y(0) = \sqrt{2}, \ y'(0) = \frac{1}{2\sqrt{2}}$		$y'' = 128y^3,$ y(0) = 1, y'(0) = 8
3	$y''y^3 + 64 = 0,$ y(0) = 4, y'(0) = 2	4	$y'' + 2\sin y \cos^3 x = 0,$ y(0) = 0, y'(0) = 1
5	$y'' = 2\sin^3 y \cos y,$ $y(1) = \frac{\pi}{2}, y'(1) = 4$	6	$y'' = 28y^3,$ y(1) = 1, y'(1) = 7
	$y''y^3 + 49 = 0,$ y(3) = -7, y'(3) = -1	8	$4y''y^{3} = 16y^{4} - 1,$ $y(0) = \frac{\sqrt{2}}{2}, \ y'(0) = \frac{1}{\sqrt{2}}$
9	$y'' + 8\sin y \cos^3 y = 0,$ y(0) = 0, y'(0) = 2	10	$y'' = 72y^3,$ y(2) = 1, y'(2) = 6

2.1.9. Задачи Коши для однородных линейных дифференциальных уравнений второго порядка с постоянными коэффициентами

1	y'' + 8y' + 16y = 0, y(0) = 1, y'(0) = 0	2	y'' - 7y' + 6y = 0, y(0) = 2, y'(0) = 0
3	y'' - 4y' + 17y = 0, $y\left(\frac{\pi}{2}\right) = 0, \ y'\left(\frac{\pi}{2}\right) = 1$	4	y'' - 8y' + 15y = 0, y(0) = 1, y'(0) = -2
5	y'' - 4y' + 4y = 0, y(0) = 2, y'(0) = -1	6	y'' + y = 0, $y(\pi) = 1, y'(\pi) = -4$
7	y'' - 2y' + y = 0, y(2) = 0, y'(2) = 6	8	y'' + 2y' + 10y = 0, $y\left(-\frac{\pi}{2}\right) = 0, \ y'\left(-\frac{\pi}{2}\right) = 1$
9	y'' - 7y' + 10y = 0, y(0) = 1, y'(0) = -1	10	y'' - 6y' + 9y = 0, y(0) = 2, y'(0) = 1

2.1.10. Дифференциальные уравнения второго порядка

1	$y'' - 4y' + 5y = -e^{2x} \sin 6x;$ $y'' + 2y' + y = (\sin x + \cos x)e^{4x};$ $y''' + 3y'' + 5y' = (1 - x^2)$	2	$y''' + y'' = 5x^{2} - 1;$ $y'' - 3y' + 2y = (4x + 9)e^{2x};$ $y'' + 2y' + 5y = -2\sin x$
3	$y'' - 2y' + 4y = (16 - 12x)e^{-x};$ $y''' - 2y'' + 2y' = (1 - 2x)e^{x};$ $y''' - y'' = (6x^{2} + 3x)$	4	$y^{(IV)} + 2y''' + y'' = 4x^{2};$ $y'' - 3y' - 2y = -4xe^{x};$ $y'' + y = 2\cos 3x - 3\sin 3x$
5	$y'' + 2y' = -2e^{x} (\sin x + \cos x);$ $y''' - y'' + y' - y = (3x + 7)e^{2x};$ $y''' - y'' = (x^{2} + x)$	6	$3y^{(IV)} + y''' = 6x - 1;$ $y''' + y'' - y' - y = (8x + 4)e^{x};$ $y'' + 6y' + 13y = e^{-3x}\cos 4x$
7	$y^{(IV)} - y''' + 3y'' - y' = 2x;$ $y''' + 2y'' + y' = (2x + 5)e^{2x};$ $y'' + y = 2\cos 7x + 3\sin 7x$	8	$y^{(V)} + 2y^{(IV)} = 2x + 3;$ $y''' + 4y'' + 3y' = (x - 1)e^{x};$ $y'' + 4y' = e^{x} (\sin x + \cos x)$
9	$y^{(IV)} - 2y''' + y'' = (1+x)2x;$ $y'' - 5y' + 4y = (2x+5)e^{x};$ $y^{(2)} - 4y' + 8y = e^{x} (5\sin x - 3\cos x)$	10	$y^{(IV)} + 2y'' + y' = x^{2} + x - 1;$ $y''' - 2y'' + 8y' = (18x + 21)e^{2x};$ $y'' - 4y' + 3y = e^{2x} \sin 3x$

2.2. Итоговая контрольная работа

Определите тип уравнения (задачи Коши) и решите с подробными выкладками.

Вариант 1	Вариант 2
$xy' = 2\sqrt{3x^2 + y^2} + y$	$(6y - 3x^2 + 3y^2)dx + (6x + 6xy)dy = 0$
$\left[\left(1+e^{\frac{x}{y}}\right)dx+e^{\frac{x}{y}}\left(1-\frac{x}{y}\right)dy=0\right]$	$e^{y-x^2}dy - 2xdx = 0$, $y(0) = \ln 2$
$2(xy+y)y'+x(y^4+1)=0$	$y + 2xy = xe^{-x^2}$
$y' + y \tan x = \frac{1}{\cos x}$	(x+y)y'+y=0
$y'' + 6y' + 9y = (x-2)e^{-3x}$	2y'' + 5y' - 7y = 0
$y'' - y' \cot x = 2x \sin x$	$y'' = e^{2x} + \sin 3x$
y'' + 4y' + 4y = 0	$y'' - 3y' + 2y = 10e^x$
Вариант 3	Danwayer 4
Вариант 3	Вариант 4
$xy' = 2\sqrt{3x^2 + y^2} + y$	$\frac{2x(1-e^{y})dx}{(1+x^{2})^{2}} + \frac{e^{y}dy}{1+x^{2}} = 0$
	•
$xy' = 2\sqrt{3x^2 + y^2} + y$	$\frac{2x(1-e^{y})dx}{(1+x^{2})^{2}} + \frac{e^{y}dy}{1+x^{2}} = 0$
$xy' = 2\sqrt{3x^2 + y^2} + y$ $\left(1 + e^{\frac{x}{y}}\right)dx + e^{\frac{x}{y}}\left(1 - \frac{x}{y}\right)dy = 0$	$\frac{2x(1-e^{y})dx}{(1+x^{2})^{2}} + \frac{e^{y}dy}{1+x^{2}} = 0$ $y^{2} + x^{2}y' = xyy'$

$y(2) - y' \cot x = 2x \sin x$	y'' + y' + 2y = 0
y'' + 4y' + 4y = 0	$y'' - \frac{2}{x}y' = 2x^3$
Вариант 5	Вариант 6
$\left(1+e^x\right)ydy-e^ydx=0$	$(3x^2 - 3y^2 + 4x)dx - (6xy + 4y)dy = 0$
$y' - \frac{2y}{x+1} = (x+1)^3, \ y(0) = \frac{1}{2}$	$y - xy = 3\left(1 + x^2y'\right)$
$\left[\left(\frac{\sin 2x}{y} + x \right) dx + \left(y - \frac{\sin^2 x}{y^2} \right) dy = 0 \right]$	$\left(2\sqrt{xy} - y\right)dx + xdy = 0$
$\left(y^2 - 2xy\right)dx + x^2dy = 0$	$x^2y' = 2xy + 3, \ y(1) = -1$
(x+1)y'' = y'-1	y'' + 25y = 0
$y'' - 7y' + 6y = \sin x$	$y'' \tan y = 2(y')^2$
y'' + y' + y = 0	$y'' - 4y = e^{2x} \sin 2x$

2.3. Итоговая расчётно-графическая работа

	Вариант 1		Вариант 2	
1	$xy'\left(1+x^2\right) = 1+y^2$	1	$xy\left(1+x^2\right)y'=1+y^2$	
2	$xy' - y = \frac{x}{\arctan \frac{y}{x}}$	2	$y' = \cos(x - y)$	
3	$\sqrt{x^2 + y^2} = y - xy'$	3	$\left(x^2 + y^2\right)dx - xydy = 0$	
4	$3e^x \tan y dx + (1 + e^z) \sec^2 y dy = 0$	4	y' = x + y	
5	y' = x - y	5	$\left(x - y\cos\frac{y}{x}\right)dx + x\cos\frac{y}{x}dy = 0$	

6	$y'\cos^2 x + y = \tan x, \ y(0) = 0$	6	$y' + y\cos x - \frac{\sin 2x}{2} = 0$
7	$y' + \frac{2y}{x} = \frac{2}{\cos^2 x}$	7	(x+y+1)dx = (2x+2y-1)dy
8	$y' + y\cos x = \sin x\cos x$	8	$y' + x - \frac{y}{x} = 0, \ y(1) = 0$
9	$xydx + \left(1 + y^2\right)\sqrt{1 + x^2}dy = 0$	9	$y' - 2xy = 2xe^{x^2}$
10	$y'' = x \sin x$	10	$(xy'-y)\arctan-\frac{y}{x}=x$
11	$y'' = 3x^2$, $y(0) = 2$, $y'(0) = 1$	11	$y' + \frac{x}{1 - x^2} y = x\sqrt{y}$
12	$\left(1-x^2\right)y''-xy'=2$	12	$8xy' - y = -\frac{1}{y^3\sqrt{x+1}}$
13	$y^{(IV)} - 13y'' + 36y = 0$	13	$y'' = xe^x$
14	$9y'' + y = 0, y\left(\frac{3\pi}{2}\right) = 2, y'\left(\frac{3\pi}{2}\right) = 0$	14	$y''' = \frac{2}{x^3}$
15	$y'' + y = \cos x$	15	$y''(1 + \ln x) + \frac{y'}{x} = 2 + \ln x$
16	$y'' - y' = e^{-x}$	16	xy'' + y'' = 1 + x
17	$y''\left(x^2+1\right) = 2xy'$	17	2y'' - y'' = 1, $y(0) = 0$, $y'(0) = 1$
18	$y'' - 2y' + 10y = 37\cos 3x$	18	$\left(y'\right)^2 - yy'' = y^2y'$
19	y'' + 4y = 8	19	$2y'' - 4y = 0$, $y(0) = \frac{1}{4}$, $y'(0) = 0$
20	$y'' - 8y' + 7y = 8^{-x}$	20	$y'' + 2y = x^2 + 2$
21	$y'' - 3y' + 2y = 3x + 5\sin 2x$	21	$y^{(IV)} + 4y'' = 4\cos 4x$
22	$y'' = \frac{y'}{x} \left[\ln \left(\frac{y'}{x} \right) + 1 \right]$	22	$y'' - 7y' + 6y = (x-1)\cos x + 2\sin x$

Вариант 3		Вариант 4	
1	x + yx + yy'(1+x) = 0	1	$\sec^2 x \tan y dx + \sec^2 y \tan x dy = 0$
2	$\tan xy' - y = 0$	2	$e^{1+x^2} \tan y dx - \frac{e^{2x}}{x-1} dy - y dx = 0$
3	$y - xy' = y \ln \frac{x}{y}, \ y(1) = 0$	3	$\left(x + \sqrt{x^2 + y^2}\right) dy - y dx = 0$
4	$xy' = 2\left(y - \sqrt{xy}\right)$	4	$y'x = y\left(1 + \ln\frac{y}{x}\right)$
5	$\sqrt{x^2 + y^2} = y + \frac{x}{y'}$	5	$\frac{dy}{dx} + \frac{4xy}{x^2 + 1} = \frac{1}{x^2 + 1}$
6	(16x + y - 1)dx + (4x + y - 2)dy = 0	6	$4xy' + 3y = -e^x x^2$
7	$y' = \frac{1}{\cos x} - y \tan x$	7	$y' + \frac{xy}{1 - x^2} = \arcsin x + x$
8	$x(x-1)y' + y = x^{2}(2x-1)$	8	$y' = 5\sqrt{y}, \ y(0) = 25$
9	$dy - e^{-x}dx - xdy = xydx$	9	$y' + y \tan x = \cos^2 x$
10	$y' + \frac{y}{x+1} + x^2 = 0$	10	$\sin^4 x \frac{d^3 y}{dx^3} = \sin 2x$
11	$\left(1+x^2\right)y' = xy + x^2y^2$	11	$y' + y = x\sqrt{x}$
12	$y''y' = x(y')^2, y(1) = 1, y'(1) = 2$	12	$2xy'''y'' = (y')^2 + a^2$
13	2xy' = -y''	13	y'' - y' - 2y = 0, $y(0) = 0$, $y'(0) = 2$
14	$y'' = e^x + \frac{3}{4}e^{-\frac{5}{2}x}$	14	y'' + 3y' = 0, $y(0) = 0$, $y'(0) = 2$
15	$y''' = -\frac{2}{x^3}, \ y(1) = 0 = y'(1)$	15	$y'' + 3y' = 8\sin 2x$
16	$y'' = 2\cot x \times y' + \sin^3 x$	16	$y'' + 4y = \sin 2x + 1,$ $y(0) = \frac{1}{4}, y'(0) = 0$

17	$\left(y'\right)^2 + 2yy'' = 0$	17	$y'' - 2y' + 2y = x^2$
18	$y'' - (y')^2 = y^3$	18	$4y''' + y' = 3e^z + 2\sin\frac{x}{2}$
19	2y'' - 3y' + y = 0	19	$y'' - 5y' + 6y = e^x \sin x$
20	$y'' - 2y' + 10y = 37\cos 3x$	20	y'' - 5y' = 7
21	$y'' - 2y' = e^{2z} + 5$	21	$y'' - 3y' - 4y = x^2$
22	$y'' + 4y = \sin 2x$	22	$\left(1 - x^2\right)y'' + xy' = 2x$
	Вариант 5		Вариант 6
1	$xy' = y \cos \ln \frac{y}{x}$	1	$\left(x^2 - y^2\right)dx + 2xydy = 0$
2	$xy' = x + \frac{y}{2}$	2	$xy' - y = y^2$
3	$xy' - x^2y - y^2 = 0$	3	$\frac{y}{y'} = \sqrt{x^2 - y^2} + x$
4	$xy' - y = x \tan \frac{y}{x}$	4	$\left(y + \sqrt{x^2 - y^2}\right) dx - x dy = 0$
5	$x^2 + xy + y^2 = x^2y'$	5	y'' + 5y' + 6y = 3x, $y(1) = 0$, $y'(1) = 0$
6	$x(x-1)y' + y = x^{2}(2x-1)$	6	$\left(y'\right)^2 = 2e^{-y}y''$
7	$y'(3x^{2}-2x)-y(6x-2)+ + \frac{2}{x}(9x-4)=0$	7	$y' = \frac{y}{x} \ln \frac{y}{x}$
8	$(y'-y)=(1+x^2)e^x$, $y, y'(0)=0$	8	$y' - y = x \tan \frac{y}{x}$
9	$\left(a^2 - x^2\right)y' + xy = a^2$	9	$y - \frac{2}{x+1}ydx = (x+1)^3 dx, \ y(0) = 3$
10	$y'-3x^2y = x^2(x^3+1), y(0)=1$	10	$y' = y - xe^{\frac{y}{x}}$

11	$y' + \frac{y}{3} + \frac{x}{3y^2} = 0$	11	$y' - y = y^2 x$
12	$y'-3y-x^2y=0$	12	$(1+y^2)dx = (y+yx^2)dy$
13	$y' + y^2 \cot x = \cos x$	13	$y'' - y' = 4e^{-x}$
14	$y' + \frac{x}{1 - x^2} y = x\sqrt{y}$	14	$y'' = 2\sqrt{y}$
15	$y''\left(e^x+1\right)+y'=0$	15	$y'' - 3y' = \sin x + e^x$
16	$y'' + \frac{y'}{x} + \frac{x^2}{y} = 0$, $y(2) = 0$, $y'(2) = 4$	16	$y''(e^x+1)+y'=0$
17	$y^{(IV)} = \sin x$	17	$(y''')^2 + (y'')^2 = 1$
18	$y'(1-\ln y)y'' + (1+\ln y)(y')^2 = 0$	18	$3y^2y' + y^3 + x = 0$
19	$y'' - y' + y = x^3 + 6$	19	$(3x^2y^2 + 1)dx + 2x^3ydy = 0$
20	$y'' - 5y' + 6y = e^{-x}$	20	$y''' = \frac{1}{\left(y'\right)^3}$
21	$y'' - 7y' + 6y = (x - 2)e^x$	21	y''' - 2y'' + y' = 0
22	$y'' + y' - 2y = \sin 3x$	22	$y'' + 4y' = B\sin 2x$
	Вариант 7		Вариант 8
1	$\left(\sqrt{x}y + \sqrt{x}\right)y' - y = 0$	1	$(2x+1)dy + y^2dx = 0, y(4) = 1$
2	$3e^x \sin y dx + \left(1 - e^x\right) \sec y dy = 0$	2	$yy' = -2x\sec y$
3	$\sqrt{x^2 + y^2} = y + \frac{x}{y'}$	3	$\left(x^2 + y^2\right)dx - xydy = 0$
4	$xy' = y \ln \frac{x}{y}$	4	$y' = \frac{x}{y} + \frac{y}{x}, \ y(-1) = 0$
5	$x^2 + y^2 = xyy', y(1) = 1$	5	$y' = a\sin x + By$

6	(x+y-2)dx + (x-y+4)dy = 0	6	$y'\sin x - y\cos y = 1$
7	$\left(1 - x^2\right)y' + xy = 1$	7	$\left(x^2 + 1\right)y' + 4xy = 3$
8	$x(x^3+1)y'+(2x^3-1)y-\frac{x^3-2}{x}=0$		$y' = \frac{2x}{x + 2y} - 3$
9	$y'\sin x - y\cos x = -\frac{\sin^2 x}{x^2}$	9	$y' - y \cot x = 2x - \frac{x^2 \cos x}{\sin x}$
10	$\cos y dx = (x + 2\cos y)\sin y dy$	10	$xy'y'' = (y' - xy')^2$
11	$2\sin x \times y' + y\cos x =$ $= y^{3} (x\cos x - \sin x)$	11	$y'' = \frac{y'}{\sqrt{y}}$
12	$xy' = 3y - x^4y^2$	12	$y'' - (y')^2 = y^3, y(0) = -\frac{1}{2}, y'(0) = 0$
13	$y'' - x = \ln x$	13	y'' + 5y' + 6y = 0, y(0) = 1, y'(0) = -6
14	$y''' = \frac{6}{x^3}$	14	y''' - 3y'' + 3y' - y = 0
15	$y''(1-\ln x) + \frac{1}{x}y' = 2 + \ln x,$ $y(1) = \frac{1}{2}, y'(1) = 1$	15	$y'' - y = \cos 2x$
16	$x^2y'' + xy' = 1$	16	$y'' + y = \cos 3x,$ $y\left(\frac{\pi}{2}\right) = 4, \ y'\left(\frac{\pi}{2}\right) = 1$
17	$1 + (y')^2 = 2yy'', y(1) = 1, y'(1) = 1$	17	$y'' + 2y = \sin x - x^2 e^x$
18	$y'' + \frac{2}{1 - y} (y')^2 = 0$	18	y'' - 2y' = 4(x-1)
19	$y'' - 2y' + 2y = 8\sin 2x$	19	y'' - 2y' + 2y = 0, $y(\pi) = -2, y'(\pi) = -3$
20	y'' - 5y' + 4y = 0, y(0) = 5, y'(0) = 3	20	$y'' - 4y' = 2e^{4x}$

21	$y'' - 2y' - 8y = e^x - 8\cos 2x$	21	$y'' - 4y' + 5y = 3\sin 2x$
22	$y'' - 2y' = x^2 - 1$	22	$y''' = x + \sin x$
	Вариант 9		Вариант 10
1	$y' + \sqrt{\frac{1 - y^2}{1 - x^2}} = 0$	1	$2\sqrt{y}dx - xdy = 0$
2	$(x^2 - yx^2)dy + (y^2 + xy^2)dx = 0$	2	$(1+x^2)y' + y(\sqrt{1+x^2}-x) = 0$
3	$dy = \frac{2xy}{x^2 - y^2} dx$	3	$y' = \frac{x + 2y}{-x}$
4	$xy' = y \ln \frac{y}{x}$	4	$y' = \frac{y}{x} + \tan\frac{y}{x}$
5	$xy' - y = \sqrt{x^2 - y^2}$	5	$xyy' = x^2 + y^2$
6	(x+y+1)dx - (2x+2y-1)dy = 0	6	(x-y)dx + (2y-x+1)dy = 0
7	$\left(x^2 - 1\right)y' - xy = x^3 - x$	7	$y' + x - \frac{y}{x} = 0$
8	$y' + 2yx = 2xe^{-x^2}$	8	$y'\cot x - y = 2\cos^2 x \times \cot x$
9	$y' = \frac{x}{\cos x} - y \tan x$	9	$y' + \frac{x}{1 - x^2} y = x\sqrt{y}$
10	$y' - y\sin x = \sin x\cos x$	10	$(x^2 - x)y' + y = 2x^3 - x^2$
11	$xy' + y = y' \ln x$	11	$y' = \tan x \times y + \cos x$
12	$y' - 9x^2y = (x^5 + x^2)y^{\frac{2}{3}}$	12	$y' + \frac{y}{x+1} + y^2 = 0$
13	$y''' = \frac{\ln x}{x^2},$ y(1) = 0, y'(1) = 1, y''(1) = 2	13	$y'' = x \sin x$
14	$y''' = x + \cos x$	14	$y'' = \left(x+1\right)^2 - \cot x$
15	$y'' = 2\cot x \times y' + \sin^3 x$	15	$(y''x - y')y = x^3$

16	$(1-x^2)y'' - 2xy' = 0,$ y(0) = 0, y' = 3	16	$\left(1+x^2\right)y''=2xy'$
17	$\left(y'\right)^2 + 2yy'' = 0$	17	$2y(y')^3 + y'' = 0, y(0) = 0, y'(0) = -3$
18	$y'' = \sqrt{1 + \left(y'\right)^2}$	18	$yy'' - (y')^2 = y''$
19	y'' - 10y' + 25y = 0, y(0) = 2, y'(0) = -1	19	$4y'' + 8y' + 5y = e^x \cos\frac{x}{2}$
20	$y'' - 4y' = xe^{4x}$	20	$y'' - 4y' + 5y = 2x^{2}e^{x},$ y(0) = 2, y'(0) = 3
21	$y'' + 4y' - y = 8\sin 2x$	21	$y'' + 9y = 2x\sin x + xe^{3x}$
22	$y'' - y' - 2y = e^x + x^2 - 1$	22	$y'' - 2y = x^2 - 1$

2.4. Образцы решения типичных задач, предлагаемых студентам в качестве контрольной работы

Задание 1. Решить уравнение xy'' + y' = 0.

Решение. Это ДУ 2-го порядка типа F(x, y', y'') = 0, допускающее понижение порядка. Для его решения введём переменную u(x) = y', следовательно, y'' = u'. После подстановки новой переменной в уравнение имеем: xu' + u = 0.

Разделяя переменные, получим:
$$\frac{xdu}{dx} = -u \implies \frac{du}{u} = -\frac{dx}{x}$$
.

Интегрируя последнее уравнение, получим: $\int \frac{du}{u} = -\int \frac{dx}{x} \Rightarrow$

$$\Rightarrow \ln|u| = -\ln|x| + \ln C_1 \Rightarrow \ln|u| = \ln\left|\frac{C_1}{x}\right| \Rightarrow u = \frac{C_1}{x}.$$

Переходя к переменной у, решим уравнение:

$$y' = \frac{C_1}{x} \implies y = \int \frac{C_1 dx}{x} = C_1 \ln|x| + C_2.$$

Окончательное решение ДУ имеет вид: $y = C_1 \ln |x| + C_2$.

Ombem: $y = C_1 \ln |x| + C_2$.

Задание 2. Написать уравнение кривой, проходящей через точку M(1,3), если угловой коэффициент касательной в любой точке кривой равен абсциссе точки касания.

Решение. Угловой коэффициент касательной к кривой y = f(x) в любой точке (x, y) равен y' и равен по условию задачи абсциссе точки касания (x, y), т. е. x.

Получаем ДУ:
$$y' = x \implies y = \int x dx = \frac{x^2}{2} + C$$
.

Уравнение кривой: $y = \frac{x^2}{2} + C$.

Константу C найдём из условия, что кривая проходит через точку $M(1,3)\colon y(1) = \frac{1^2}{2} + C = \frac{1}{2} + C = 3 \implies C = 3 - \frac{1}{2} = \frac{5}{2}.$

Уравнение искомой кривой имеет вид: $y = \frac{x^2}{2} + \frac{5}{2}$ — уравнение параболы.

Omsem:
$$y = \frac{x^2}{2} + \frac{5}{2}$$
.

Задание 3. Найти общее решение (общий интеграл) ДУ 1-го порядка:

a)
$$x \times y' = y \times \ln \frac{y}{x}$$
;

6)
$$\left(\frac{\sin 2x}{y} + x\right) dx + \left(y - \frac{\sin^2 x}{y^2}\right) dy = 0$$
.

Решение a).
$$y' = \frac{y}{x} \ln \frac{y}{x}$$
.

Сделаем замену: $\frac{y}{x} = t \implies y = tx \implies y' = t'x + t$.

Получаем уравнение: $t'x + t = t \ln t \implies t'x = t \ln t - t \implies \frac{dt}{dx} x = t \left(\ln t - 1 \right) \implies$

$$\Rightarrow \frac{dt}{t(\ln t - 1)} = \frac{dx}{x}.$$

Интегрируем обе части уравнения: $\int \frac{dt}{t(\ln t - 1)} = \int \frac{dx}{x} \Rightarrow$

$$\Rightarrow \int \frac{d(\ln t - 1)}{\ln t - 1} = \int \frac{dx}{x} \Rightarrow \ln |\ln t - 1| = \ln Cx \Rightarrow \ln t - 1 = Cx \Rightarrow \ln \frac{y}{x} - 1 = Cx \Rightarrow$$

$$\Rightarrow \ln \frac{y}{x} = Cx + 1 \Rightarrow \frac{y}{x} = e^{Cx + 1}.$$

Получаем общее решение: $y = xe^{Cx+1}$.

Решение б). Проверим, является ли это уравнение ДУ в полных дифференциалах вида P(x,y)dx + Q(x,y)dy = 0. Если $P(x,y) = \frac{\sin 2x}{y} + x$,

a
$$Q(x,y) = y - \frac{\sin^2 x}{y^2}$$
, to $\frac{\partial P}{\partial y} = -\frac{\sin 2x}{y^2}$; $\frac{\partial Q}{\partial x} = -\frac{2\sin x \cos x}{y^2} = -\frac{\sin 2x}{y^2}$,

T. e.
$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
.

Следовательно, уравнение является уравнением в полных дифференциалах, где левая часть представляет собой полный дифференциал некото-

рой функции
$$F(x,y)$$
: $dF(x,y) = \left(\frac{\sin 2x}{y} + x\right) dx + \left(y - \frac{\sin^2 x}{y^2}\right) dy$.

T. K.
$$dF(x,y) = \frac{\partial F}{\partial x}dx + \frac{\partial F}{\partial y}dy$$
, To $\frac{\partial F}{\partial x} = \frac{\sin 2x}{y} + x$; $\frac{\partial F}{\partial y} = y - \frac{\sin^2 x}{y^2}$.

Из первого уравнения найдём:
$$F(x,y) = \int \left(\frac{\sin 2x}{y} + x\right) dx = -\frac{\cos 2x}{2y} + \frac{x^2}{2} + \varphi(y)$$
.

Продифференцируем по y и подставим во второе уравнение: $\frac{\partial F}{\partial y} = \frac{\cos 2x}{2y^2} +$

$$+\phi'(y) = y - \frac{\sin^2 x}{y^2} \Rightarrow \frac{1 - 2\sin^2 x}{2y^2} + \phi'(y) = y - \frac{\sin^2 x}{y^2} \Rightarrow \phi'(y) = y - \frac{1}{2y^2} \Rightarrow$$
$$\Rightarrow \phi(y) = \int \left(y - \frac{1}{2y^2}\right) dy = \frac{y^2}{2} + \frac{1}{2y} + C_1.$$

Тогда окончательно получим: $F\left(x,y\right) = -\frac{\cos 2x}{2y} + \frac{x^2}{2} + \frac{y^2}{2} + \frac{1}{2y} + C_1 =$ $= C_2 \implies \frac{\sin^2 x}{y} + \frac{x^2 + y^2}{2} + C_1 = C_2.$

Задание 4. Найти частное решение ДУ 1-го порядка $dy \ln y - dx = 0$, удовлетворяющее начальному условию y(1) = 1.

Решение: $dy \ln y = dx \Rightarrow \int \ln y dy = \int dx \Rightarrow \ln y = u \Rightarrow dy = dv \Rightarrow$ $\Rightarrow \frac{dy}{y} = du \Rightarrow v = y \Rightarrow y \ln y - \int dy = \int dx \Rightarrow y \ln y - y = x + C.$

Найдём частное решение, удовлетворяющее начальному условию $y(1)=1: 1 \times \ln 1 - 1 = 1 + C \implies C = -2$.

Получаем частное решение: $y(\ln y - 1) = x - 2$.

Задание 5. Найти общее решение (общий интеграл) ДУ 2-го порядка:

a)
$$y'' + 2y' + 2y = \frac{1}{e^x \sin x}$$
;

$$6) xy'' = y' \ln \frac{y'}{x}.$$

Решение *а*). Данное уравнение является неоднородным линейным ДУ 2-го порядка. Общее решение найдём в виде: $y = \overline{y} + Y$, где \overline{y} – общее решение однородного уравнения, Y – частное решение неоднородного уравнения.

Решим однородное уравнение: y'' + 2y' + 2y = 0; p = 2, q = 2; $k^2 + 2k + 2 = 0$, D < 0.

Т. к. характеристическое уравнение не имеет действительных корней, то общее решение будем искать в виде: $\overline{y} = C_1 e^{\alpha x} \sin \beta x + C_2 e^{\alpha x} \cos \beta x$,

где
$$\alpha = -\frac{p}{2} = -1$$
; $\beta = \sqrt{q - \frac{p^2}{4}} = \sqrt{2 - 1} = 1$.

Тогда общее решение: $\overline{y} = C_1 e^{-x} \sin x + C_2 e^{-x} \cos x$.

Частное решение исходного неоднородного уравнения будем искать в виде: $Y = C_1(x)y_1 + C_2(x)y_2$, где $y_1 = e^{-x}\sin x$, $y_2 = e^{-x}\cos x$ — частные решения однородного ДУ, образующие фундаментальную систему решений, т. к. определитель Вронского для них: $W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} =$

$$= \begin{vmatrix} e^{-x} \sin x & e^{-x} \cos x \\ -e^{-x} \sin x + e^{-x} \cos x & -e^{-x} \cos x - e^{-x} \sin x \end{vmatrix} = -e^{-2x} \sin x \cos x - e^{-2x} \sin^2 x + e^{-2x} \sin x \cos x - e^{2x} \cos^2 x = -e^{-2x} \neq 0.$$

Система линейных алгебраических уравнений относительно неизвестных произвольных постоянных $C_1(x)$, $C_2(x)$ может быть записана

в виде:
$$\begin{cases} C_1'(x)y_1 + C_2'(x)y_2 = 0, \\ C_1'(x)y_1' + C_2'(x)y_2' = f(x); \end{cases}$$

$$\begin{cases} C_1'(x)e^{-x}\sin x + C_2'(x)e^{-x}\cos x = 0, \\ C_1'(x)\left(-e^{-x}\sin x + e^{-x}\cos x\right) + C_2'(x)\left(-e^{-x}\cos x - e^{-x}\sin x\right) = \frac{1}{e^x\sin x}. \end{cases}$$

Из первого уравнения $C_1'(x) = -C_2'(x) \frac{\cos x}{\sin x}$.

Подставим во второе уравнение и найдём $C_2(x)$:

$$-C_2'(x)\frac{\cos x}{\sin x}e^{-x}\left(-\sin x + \cos x\right) + C_2'(x)e^{-x}\left(-\cos x - \sin x\right) = \frac{e^{-x}}{\sin x} \implies$$

$$\Rightarrow C_2'(x)\left(\cos x - \frac{\cos^2 x}{\sin x}\right) - C_2'(x)e^{-x}\left(\cos x + \sin x\right) = \frac{e^{-x}}{\sin x} \implies$$

$$\Rightarrow C_2'(x) \left(-\frac{\cos^2 x}{\sin x} - \sin x \right) = \frac{1}{\sin x} \Rightarrow C_2'(x) \left(-\frac{1}{\sin x} \right) = \frac{1}{\sin x} \Rightarrow$$
$$\Rightarrow C_2'(x) = -1 \Rightarrow C_2(x) = -x.$$

Найдём
$$C_1(x)$$
: $C_1'(x) = -C_2'(x) \frac{\cos x}{\sin x} \Rightarrow C_1(x) = \ln |\sin x|$.

Частное решение: $Y = e^{-x} \sin x \times \ln |\sin x| - xe^{-x} \cos x$.

Общее решение уравнения: $y = \overline{y} + Y = C_1 e^{-x} \sin x + C_2 e^{-x} \cos x + e^{-x} \sin x \times \ln |\sin x| - x e^{-x} \cos x$.

Решение б). Сделаем подстановку u(x) = y', u'(x) = y''.

$$xu' = u \ln \frac{u}{x} \implies u = xe^{Cx+1} \implies y' = xe^{Cx+1} \implies y = \int xe^{Cx+1} dx \implies x = u \implies e^{Cx+1} dx = dv \implies$$

$$\Rightarrow dx = du \Rightarrow \frac{e^{Cx+1}}{C} = v \Rightarrow y = \frac{x}{C}e^{Cx+1} - \frac{1}{C}\int e^{Cx+1}dx = \frac{x}{C}e^{Cx+1} - \frac{1}{C^2}e^{Cx+1} + C_2.$$

Получили общее решение уравнения: $y = \frac{1}{C}e^{Cx+1}\left(x - \frac{1}{C}\right) + C_2$.

Задание 6. Найти частное решение ДУ 2-го порядка $y'' + \pi^2 y = 0$, удовлетворяющее начальным условиям y(0) = 0, y'(1) = 0.

Решение. Сделаем подстановку: $y' = u \implies y'' = \frac{du}{dx} = \frac{du}{dy} \times \frac{dy}{dx} = u'u$.

Подставим в исходное уравнение: $u'u + \pi^2 y = 0 \Rightarrow \frac{du}{dy}u = -\pi^2 y \Rightarrow$

$$\Rightarrow udu = -\pi^2 ydy \Rightarrow \int udu = -\pi^2 \frac{y^2}{2} + C_1 \Rightarrow u = \pm \sqrt{-\pi^2 y^2 + 2C_1}.$$

Производя обратную замену, получаем: $y' = \pm \sqrt{-\pi^2 y^2 + 2C_1} \implies$

$$\Rightarrow \frac{dy}{\pm \sqrt{-\pi^2 y^2 + 2C_1}} = dx \Rightarrow \pm \frac{1}{\pi} \arcsin \frac{\pi y}{\sqrt{2C_1}} = x + C_2 \Rightarrow \frac{\pi y}{\sqrt{2C_1}} = \pm \sin \pi (x + C_2) \Rightarrow$$

$$\Rightarrow y = \pm \frac{\sqrt{2C_1}}{\pi} \sin \pi (x + C_2).$$

Найдём частное решение, удовлетворяющее начальным условиям y(0) = 0, y'(1) = 0. $y' = \pm \sqrt{2C_1} \cos \pi (x + C_2) \Rightarrow y'(1) = \pm \sqrt{2C_1} \cos \pi (1 + C_2) = 0 \Rightarrow$ $\Rightarrow \cos \pi (1 + C_2) = 0 \Rightarrow \pi (1 + C_2) = \frac{\pi}{2} \Rightarrow C_2 = -\frac{1}{2} \Rightarrow y(0) = \pm \frac{\sqrt{2C_1}}{\pi} \sin \pi \left(0 - \frac{1}{2}\right) = \pm \frac{\sqrt{2C_1}}{\pi} \sin \left(-\frac{\pi}{2}\right) = \mp \frac{\sqrt{2C_1}}{\pi} = 0 \Rightarrow C_1 = 0$.

Получили частное решение уравнения: y = 0.

Задание 7. Решить систему ДУ $\begin{cases} \frac{dx}{dt} = -y + z, \\ \frac{dy}{dt} = z, \\ \frac{dz}{dt} = -x + z. \end{cases}$

Решение. Продифференцируем первое уравнение системы по t: $\frac{d^2x}{dt^2} = -\frac{dy}{dt} + \frac{dz}{dt} \, .$

Значения $\frac{dy}{dt}$ и $\frac{dz}{dt}$ возьмём из второго и третьего уравнений:

$$\frac{d^2x}{dt^2} = -z - x + z \implies x'' + x = 0.$$

Сделаем замену: $x' = u \implies x'' = u'u$.

Получим уравнение: $u'u+x=0 \Rightarrow u'u=-x \Rightarrow udu=-xdx \Rightarrow$ $\Rightarrow u=\pm\sqrt{-x^2+2C_1}$.

Делаем обратную замену: $x' = \pm \sqrt{-x^2 + 2C_1} \Rightarrow \frac{dx}{\pm \sqrt{2C_1 - x^2}} = dt \Rightarrow$

$$\Rightarrow \pm \arcsin \frac{x}{\sqrt{2C_1}} = t + C_2 \Rightarrow x = \pm \sqrt{2C_1} \sin(t + C_2).$$

Из третьего уравнения найдём z: $\frac{dz}{dt} = \pm \sqrt{2C_1} \sin(t+C_2) + z \implies z'-z = \pm \sqrt{2C_1} \sin(t+C_2)$.

Решение уравнения вида y' + p(x)y = f(x) можно найти по формуле: $y = e^{-\int p(x)dx} \times \int f(x)e^{\int p(x)dx}dx.$

Для нашего уравнения p(x) = -1, $\vdots f(x) = \pm \sqrt{2C_1} \sin(t + C_2)$, тогда $z = e^{\int dt} \times \pm \sqrt{2C_1} \int \sin(t + C_2) e^{-\int dt} dt = \pm \sqrt{2C_1} e^t \int \sin(t + C_2) e^{-t} dt \Rightarrow$ $\Rightarrow z = \pm \frac{\sqrt{2C_1}}{2} (\cos(t + C_2) + \sin(t + C_2)).$

Из второго уравнения найдём y: $y' = \pm \frac{\sqrt{2C_1}}{2} \left(\cos\left(t + C_2\right) + \sin\left(t + C_2\right)\right) \Rightarrow$ $y = \pm \frac{\sqrt{2C_1}}{2} \left(\sin\left(t + C_2\right) - \cos\left(t + C_2\right)\right).$

Задание 8. Решить ДУ с помощью ряда (найти первые три члена разложения в степной ряд): $xy'' + y \sin x = x$, $y(\pi) = 0$, $y'(\pi) = 0$.

Решение. Ищем решение данного ДУ в виде ряда Тейлора:

$$y = y(x_0) + y'(x_0) \times (x - x_0) + \frac{y''(x_0)}{2!} \times (x - x_0)^2 + \frac{y'''(x_0)}{3!} \times (x - x_0)^3 + \cdots$$

Подставив в исходное уравнение первое начальное условие y=0 при $x=\pi$, получим $\pi y''+0\times\sin\pi=\pi$, y''=1 .

Продифференцируем обе части исходного ДУ: $y'' + xy''' + y' \sin x + y \cos x = 1 \Rightarrow y''' = \frac{1}{x} (1 - y'' - y' \sin x - y \cos x) \Rightarrow y'''(0) = \frac{1}{\pi} (1 - 1 - 0 \times \sin \pi - 0 \times \cos \pi) = 0$.

Подставляя найденные значения производных в ряд Тейлора, для решения y(x) получим приближённое значение в виде частичной суммы

ряда:
$$y(x) \approx 0 + 0 \times (x - \pi) + \frac{1}{2!} \times (x - \pi)^2 + \frac{0}{3!} \times (x - \pi)^3 \implies y(x) \approx \frac{(x - \pi)^2}{2}$$
.

ПРИЛОЖЕНИЕ А

ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ПОЛЯ

1. Основные положения поля

Определение 18. *Физическим полем* называется часть двумерного пространства, в котором протекает какое-либо физическое явление.

Определение 19. Поле, в каждой точке которого определена скалярная функция U(M) = U(x, y, z) координат этой точки, называется *скалярным*.

Определение 20. Поле называется *векторным*, если в каждой его точке $M\left(x,y,z\right)$ задан вектор $\overline{F}\left(M\right) = P\left(M\right)\overline{i} + Q\left(M\right)\overline{j} + R\left(M\right)\overline{k}$, где $P\left(x,y,z\right),\ Q\left(x,y,z\right),\ R\left(x,y,z\right)$ – скалярные функции координат точки M.

Примерами скалярных полей служат поле давления, поле температур.

Векторными полями являются поле магнитной напряжённости, поле скоростей (жидкости, газа); поле сил тяготения, в котором каждой точке пространства ставится в соответствие сила тяжести единичной массы, помещённой в эту точку.

Если скалярная функция U или вектор \overline{F} зависят не только от координат точки, но и от времени t, физическое поле называется t нестационарным. Поле, не меняющееся со временем, называется t

В дальнейшем мы будем рассматривать только стационарные поля.

Графическое изображение скалярного поля

Пусть скалярное поле задано функцией координат точки M: $U = U\left(x,y,z\right) = U\left(M\right)$.

Рассмотрим те точки поля, в которых функция U(x, y, z) принимает равные значения. Физическое явление в таких точках протекает одинаковым образом.

Полагая U(x,y,z)=c, где $c={\rm const}$, получим уравнение некоторой поверхности. При произвольных значениях c будем иметь семейство таких поверхностей.

Определение 21. Поверхность, в каждой точке которой физическое явление протекает одинаково, называется *поверхностью уровня*, или *эквипотенциальной поверхностью*, или *поверхностью равного уровня*.

Если функция U(x,y,z) однозначна, то эквипотенциальные поверхности не пересекают друг друга, т. е. через каждую точку поля проходит только одна поверхность.

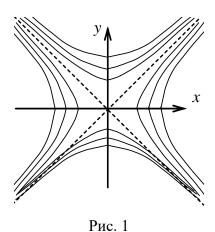
Пример 26. Потенциал электростатического поля задаётся функцией $\phi = \frac{q}{r}, \text{ где } q - \text{заряд}, \ r = \sqrt{x^2 + y^2 + z^2} - \text{расстояние от заряда до точки } M.$ Выяснить поведение эквипотенциальной поверхности.

Решение. Эквипотенциальная поверхность: $\phi = {\rm const}\,, \quad \frac{q}{r} = c\,,$ или $\overline{r}^2 = \left(\frac{q}{c}\right)^2 \implies x^2 + y^2 + z^2 = \left(\frac{q}{c}\right)^2.$

Последнее уравнение суть сфера радиуса $R=\frac{q}{c}$ с центром в точке приложения заряда, которую располагаем в начале координат. Т. к. функция $\phi=\frac{q}{\sqrt{x^2+y^2+z^2}}$ однозначна, через каждую точку поля проходит одна поверхность уровня.

Скалярное поле, образованное функцией двух переменных, называется *плоскопараллельным*. Поверхностями уровня в этом случае будут цилиндрические поверхности c = f(x, y) с направляющими линиями, расположенными в плоскости XOY. Эти линии могут служить геометрическим изображением плоскопараллельного поля.

Например, для функции $f(x,y) = x^2 - y^2$ это будут линии $x^2 - y^2 = c$, $c \neq 0$ (см. рис. 1). Эти линии – гиперболы, заполняющие всю плоскость. Семейство поверхностей равного уровня даёт наглядное представление о *скорости изменения поля*: на участках поля, где поверхности располагаются близко друг от друга, скорость изменения поля будет больше, чем там, где эти поверхности располагаются дальше друг от друга. Так, на рис. 1 видно, что скорость изменения плоского поля $f(x,y) = x^2 - y^2$ в точках, близких к асимптотам, больше, чем в точках, расположенных у координатных осей.



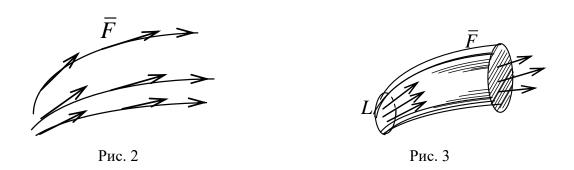
Графическое изображение векторного поля

Пусть векторное поле задано векторной функцией $\overline{F}(M) = P(x,y,z)\overline{i} + Q(x,y,z)\overline{j} + R(x,y,z)\overline{k}$. Изобразить графически это поле можно с помощью векторных линий.

Определение 22. *Векторной линией* в поле вектора \overline{F} называется линия, касательным вектором к которой в каждой её точке M служит вектор $\overline{F}(M)$ (см. рис. 2).

Например, векторными линиями в поле линейных скоростей стационарного потока жидкости являются линии тока жидкости; в магнитном поле — магнитные силовые линии.

Кроме векторных линий при изучении векторных полей используются также векторные поверхности и векторные трубки (рис. 3).



Определение 23. Векторной поверхностью называется поверхность, состоящая из векторных линий, проведённых через каждую точку некоторой линии L. В случае замкнутой линии L векторная поверхность называется векторной трубкой.

Векторные линии характеризуют только направление поля. Через каждую точку поля вектора $\overline{F}(M) = \{P(M), Q(M), R(M)\}$ проходит по одной векторной линии. ДУ векторных линий записываются в виде $\frac{dx}{P(x,y,z)} = \frac{dy}{O(x,y,z)} = \frac{dz}{R(x,y,z)}.$

Упражнение 25. Найти поверхности уровня потенциала $\varphi = \frac{e}{r}$ электрического поля точечного заряда, где r — расстояние точки M поля от точки, в которой находится электрический заряд.

Ответ: $x^2 + y^2 + x^2 = \frac{e^2}{C}$ — семейство концентрических сфер с центром в точке, в которой помещён заряд [7].

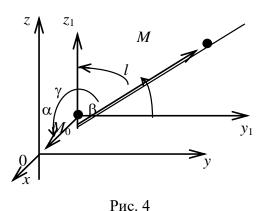
Упражнение 26. Найти векторные линии поля $\vec{a} = y\vec{i} - x\vec{j} - 2\vec{k}$.

Ответ: параметрическое уравнение векторных линий поля \vec{a} :

$$\begin{cases} x = C \cos t, \\ y = C \sin t, \\ z = 2t + C_1. \end{cases}$$

2. Производная скалярного поля

Пусть функция u(M) = u(x, y, z) задаёт скалярное поле в некоторой области V. Выберем в этой области произвольное направление \overline{l} . Задать его можно единичным вектором (см. рис. 4): $\overline{l_0} = \overline{i} \cos \alpha + \overline{j} \cos \beta + \overline{k} \cos \gamma$, $\left| \overline{l_0} \right| = 1$.



На \overline{l} выберем две точки — M_0 и M, тогда можно говорить о приращении функции $\Delta u = u \big(M \, \big) - u \big(M_0 \, \big).$

Оно определяет изменение поля при переходе от точки M_0 к точке M, а отношение $\frac{\Delta u}{\Delta l} = \frac{u \left(M \right) - u \left(M_0 \right)}{\Delta l}$ определяет среднюю скорость изменения поля U на участке Δl .

Определение 24. Если существует предел отношения $\frac{\Delta u}{\Delta l}$, когда Δl стремится к нулю, то он называется *производной поля* u(M) *в точке* M_0 *по данному направлению* $\overline{l}_0 = \{\cos\alpha,\cos\beta,\cos\gamma\}$. Этот предел обозначается $\lim_{\Delta l \to 0} \frac{u(M) - u(M_0)}{\Delta l} = \frac{\partial u}{\partial l}$.

Как практически найти $\frac{\partial u}{\partial l}$?

Теорема 5. Пусть через точку $M_0 \left(x_0, y_0, z_0 \right)$ поля $u \left(M \right)$ проведена поверхность равного уровня $u \left(M \right) = u \left(M_0 \right)$. Построим вектор нормали к этой поверхности (см. рис. 5) в точке M_0 : $\bar{N}_0 = \frac{\partial u}{\partial x} \left(M_0 \right) \bar{i} + \frac{\partial u}{\partial y} \left(M_0 \right) \bar{j} + \frac{\partial u}{\partial z} \left(M_0 \right) \bar{k}$.

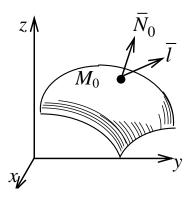


Рис. 5

 $\overline{l_0} = \overline{i} \cos \alpha + \overline{j} \cos \beta + \overline{k} \cos \gamma, \ \ \text{в точке} \ \ M_0 \ \ \text{существует производная}$ $\frac{\partial u}{\partial l} \quad \text{и численно равна скалярному произведению векторов} \quad \overline{N}_0 \quad \text{и} \quad \overline{l_0} :$ $\frac{\partial u}{\partial l} \big(M_0 \big) = \overline{N}_0 \times \overline{l_0}, \ \text{или в координатной форме} :$

$$\frac{\partial u}{\partial l}(M_0) = \frac{\partial u}{\partial x}(M_0)\cos\alpha + \frac{\partial u}{\partial y}(M_0)\cos\beta + \frac{\partial u}{\partial z}(M_0)\cos\gamma. \tag{3}$$

Доказательство. Согласно определению дифференцируемой функции её полное приращение может быть представлено в виде: $\Delta u \left(M_0 \right) = \frac{\partial u}{\partial x} \left(M_0 \right) \times \Delta x + \frac{\partial u}{\partial y} \left(M_0 \right) \times \Delta y + \frac{\partial u}{\partial z} \left(M_0 \right) \times \Delta z + \alpha \left(\Delta x, \Delta y, \Delta z \right) \Delta l \; ,$

где α — бесконечно малая при $\Delta l \to 0$, $\Delta l = \sqrt{\left(\Delta x\right)^2 + \left(\Delta y\right)^2 + \left(\Delta z\right)^2}$; $\Delta x, \Delta y, \Delta z$ — проекции вектора $\Delta \overline{l} = \overline{M_0 M}$ на оси координат: $\Delta x = \Delta l \times \cos \alpha$, $\Delta y = \Delta l \times \cos \beta$, $\Delta z = \Delta l \times \cos \gamma$.

$$\frac{\Delta u}{\Delta l}(M_0) = \Box \frac{\partial u}{\partial x}(M_0)\cos\alpha + \frac{\partial u}{\partial y}(M_0)\cos\beta\Box + \frac{\partial u}{\partial z}(M_0)\cos\gamma + \alpha(\Delta x, \Delta y, \Delta z).$$

Прежде чем выполнить предельный переход при $\Delta l \to 0$, заметим, что первые три слагаемые в последнем равенстве не зависят от Δl и их сумма представляет собой скалярное произведение векторов \bar{N}_0 и \bar{l}_0 .

Переходим к пределу
$$\frac{\partial u}{\partial l}(M_0) = \lim_{\Delta l \to 0} \frac{\Delta u(M_0)}{\Delta l} = \overline{N} \times \overline{l_0}$$
.

Теорема доказана, и формула для вычисления $\frac{\partial u}{\partial l}$ найдена.

В плоскопараллельном поле u(M) не зависит от z и $\frac{\partial u}{\partial z} = 0$, поэтому

$$\frac{\partial u}{\partial l}(M) = \frac{\partial u}{\partial x}(M)\cos\alpha + \frac{\partial u}{\partial y}(M)\cos\beta. \tag{4}$$

Пример 27. Найти производную поля $u(M) = x^2 - y^2$ в точке $A(\sqrt{3}, -4)$ по направлению $\overline{l} = \sqrt{3}\overline{i} - \overline{j}$.

Вычислим направляющие косинусы вектора $\overline{l}: |\overline{l}| = \sqrt{\left(\sqrt{3}\right)^2 + \left(-1\right)^2} = 2$, $\cos \alpha = \frac{\sqrt{3}}{2}, \ \cos \beta = -\frac{1}{2}.$

Найдём частные производные в указанной точке: $\frac{\partial u}{\partial x}(A) = 2x\big|_A = 2\sqrt{3}$, $\frac{\partial u}{\partial y}(A) = -2y\big|_A = 8$.

По формуле (4) вычислим производную по направлению: $\frac{\partial u}{\partial l}(A) =$ $= 2\sqrt{3} \times \frac{\sqrt{3}}{2} - 8 \times \frac{1}{2} = -1.$

Здесь отрицательный знак производной поля указывает на то, что в данной точке в направлении данного вектора поле убывает.

Упражнение 27. Найдите частные производные скалярного поля $U\left(x,y,z\right)=xz^2-\sqrt{x^3y} \ \text{в точке} \ M\left(2,2,4\right).$

Ombem:
$$\frac{\partial U}{\partial x} = z^2 - \frac{3}{2} \sqrt{xy}$$
, $\frac{\partial U}{\partial y} = \frac{1}{2} \sqrt{\frac{x^3}{y}}$, $\frac{\partial U}{\partial z} = 2xy$; $\left(\frac{\partial U}{\partial x}\right)_M = 13$, $\left(\frac{\partial U}{\partial y}\right)_M = -1$, $\left(\frac{\partial U}{\partial z}\right)_M = 16$.

3. Градиент скалярного поля

Определение 25. *Градиентом скалярной функции* U(x,y,z) называется вектор, проекции которого на координатные оси Ox, Oy и Oz,

соответственно, равны
$$\frac{\partial U}{\partial x}$$
, $\frac{\partial U}{\partial y}$ и $\frac{\partial U}{\partial z}$, т. е. $\overline{grad}\ U = \frac{\partial U}{\partial x}\overline{i} + \frac{\partial U}{\partial y}\overline{j} + \frac{\partial U}{\partial z}\overline{k}$.

Предполагается, что U(x,y,z) — однозначная непрерывная функция, име-

ющая непрерывные частные производные: $\left(\overline{grad}\ U\right)_x = \frac{\partial U}{\partial x}$,

$$\left(\overline{grad}\ U\right)_y = \frac{\partial U}{\partial y}, \left(\overline{grad}\ U\right)_z = \frac{\partial U}{\partial z}.$$

Модуль вектора вычисляется по формуле: $|grad\ U|=$

$$= \sqrt{\left(\frac{\partial U}{\partial x}\right)^2 + \left(\frac{\partial U}{\partial y}\right)^2 + \left(\frac{\partial U}{\partial z}\right)^2} \ .$$

Пусть в поле u(M) дана некоторая эквипотенциальная поверхность. Возьмём на этой поверхности точку M_0 и построим в ней единичный вектор \overline{n} , направленный по нормали к поверхности в сторону возрастания поля.

Градиентом скалярного поля u(M) в точке M_0 будет вектор, направленный по нормали к эквипотенциальной поверхности, проходящей через точку M_0 в сторону возрастания поля, причём модуль вектора равен значению производной скалярного поля по направлению \overline{n} : $\left|\overline{grad}\;u(M_0)\right| = \frac{\partial U}{\partial \overline{n}}\,.$

Теорема 6: 1) вектор $\overline{grad}\,u(M)$ в каждой точке M поля u(M) равен нормальному вектору \overline{N} , т. е.

$$\overline{grad} \ U(M) = \overline{N} = \frac{\partial U}{\partial x} (M) \overline{i} + \frac{\partial U}{\partial y} (M) \overline{j} + \frac{\partial U}{\partial z} (M) \overline{k} ; \qquad (5)$$

2) производная поля в каждой точке M по любому направлению \overline{l} есть проекция вектора $\overline{grad}\ U$ на направление $\overline{l}: \frac{\partial U}{\partial l}(M) = \operatorname{пp}_{\overline{l}}\ \overline{grad}\ U(M)$.

Доказательство непосредственно следует из определения градиента и формулы (3) для вычисления производной по направлению, учитывая, что $\left|\overline{l_0}\right| = 1$: $\frac{\partial u}{\partial l}(M) = \frac{\partial u}{\partial x}(M)\cos\alpha + \frac{\partial u}{\partial y}(M)\cos\beta + \frac{\partial u}{\partial z}(M)\cos\gamma = \overline{N} \times \overline{l_0} = \left|\overline{N}\right| \times \left|\overline{l_0}\right| \times \cos\left(\overline{N}, \overline{l}\right) = \operatorname{пp}_{\overline{l}} \ \overline{grad}(M).$

Следствие. Вектор $\overline{grad}\ u(M)$ в каждой точке поля показывает направление, по которому скорость изменения поля наибольшая. Модуль градиента равен наибольшей производной по направлению в этой точке: $\max\left(\frac{\partial u}{\partial l}\right) = \left|\overline{grad}\ u\right|.$

Пример 28. Для функции $u=\arctan\frac{x}{\sqrt{y^2+z^2}}$ в точке A(1,1,1) найти вектор $\overline{grad}\ u(A)$ и его модуль $\left|\overline{grad}\ u(A)\right|$.

Найдём частные производные функции u(x,y,z) и вычислим их в точке A:

$$\frac{\partial u}{\partial x} = \frac{1}{1 + \frac{x^2}{y^2 + z^2}} \times \frac{1}{\sqrt{z^2 + y^2}} = \frac{\sqrt{y^2 + z^2}}{\left(x^2 + y^2 + z^2\right)} \bigg|_A = \frac{\sqrt{2}}{3};$$

$$\frac{\partial u}{\partial y} = \frac{1}{1 + \frac{x^2}{y^2 + z^2}} \times \frac{-xy}{\sqrt{\left(y^2 + z^2\right)^3}} = \frac{-xy}{\left(x^2 + y^2 + z^2\right)\sqrt{y^2 + z^2}} \bigg|_A = -\frac{1}{3\sqrt{2}};$$

$$\frac{\partial u}{\partial z} = \frac{-xz}{\left(x^2 + y^2 + z^2\right)\sqrt{y^2 + z^2}} \bigg|_A = -\frac{1}{3\sqrt{2}};$$

$$\overline{grad} \ u(A) = \frac{\sqrt{2}}{3} \, \overline{i} - \frac{\sqrt{2}}{6} \, \overline{j} - \frac{\sqrt{2}}{6} \, \overline{k} \implies \left| \overline{grad} \ u \right| = \sqrt{\frac{2}{9} + \frac{1}{18} + \frac{1}{18}} = \frac{1}{\sqrt{3}}.$$

Дифференциальные свойства градиента:

1)
$$\overline{grad}(cu) = c \overline{grad} u$$
, где $c = \text{const}$;

2)
$$\overline{grad}(u_1 + u_2) = \overline{grad} u_1 + \overline{grad} u_2$$
;

3)
$$\overline{grad}(u_1 \times u_2) = u_2 \times \overline{grad} u_1 + u_1 \times \overline{grad} u_2$$
;

4)
$$\overline{grad} \left(\frac{u_1}{u_2} \right) = \frac{u_2}{grad} \frac{\overline{grad} u_1 - u_1}{u_2^2} \frac{\overline{grad} u_2}{u_2^2};$$

5)
$$\overline{grad} f(u) = \frac{\partial f}{\partial u} \times \overline{grad} u$$
.

Все эти формулы доказываются, исходя из известных правил дифференцирования и формулы (5).

Рассмотрим обратную задачу. Дан градиент поля, требуется найти само поле, т. е. функцию u(M).

Решение такой задачи существует и определяется с помощью криволинейного интеграла по формуле:

$$u(M) = \int_{M_0 M} \overline{grad} \ u \times \overline{dl} + u(M_0), \tag{6}$$

где M_0M — любая линия, соединяющая точки M_0 и M, на которой функция u(M) дифференцируема: $\overline{dl}=\overline{i}\times dx+\overline{j}\times dy+\overline{k}\times dz$.

Формула (6) следует из равенства $du=\overline{grad}\;u\times\overline{dl}$. Вычисляя интеграл II рода, получаем: $u(M)-u(M_0)=\int_{M_0}du=\int_{M_0M}\overline{grad}\;u\times\overline{dl}$.

Нетрудно заметить, что первая задача (отыскания градиента) аналогична задаче дифференциального исчисления — нахождению производной данной функции. Вторая задача аналогична задаче интегрального исчисления — нахождению функции по её производной.

Упражнение 28. Найти угол между градиентами скалярных полей:

$$\varphi(x,y,z) = \frac{z^2}{x^2 y^2} \text{ и } \psi(x,y,z) = \frac{3x^2}{\sqrt{2}} - \frac{y^2}{\sqrt{2}} + \sqrt{2}z^2 \text{ в точке } M\left(\frac{2}{3};2;\sqrt{\frac{2}{3}}\right).$$

Omsem: $\alpha = \frac{\pi}{2}$ [7].

Упражнение 29. Найдите поверхность уровня и градиент скалярного поля $U = \vec{Q}\vec{r}$, где \vec{Q} – постоянный вектор, \vec{r} – радиус-вектор точки M.

Ombem: $grad(\overline{Qr}) = \overline{Q}$ [7].

4. Оператор Гамильтона

Гамильтон ввёл в употребление символический вектор набла:

$$\overline{\nabla} = i \frac{\partial}{\partial x} + j \frac{\partial}{\partial y} + k \frac{\partial}{\partial z}, \ \overline{\nabla} = \left\{ \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\}.$$
 Этот символ в дальнейшем будем

называть оператор Гамильтона или оператор набла.

Применим оператор Гамильтона к записи градиента и его свойств:

- 1) $\overline{grad} u = \overline{\nabla} u$;
- 2) $\nabla (cu) = c \nabla u$;
- 3) $\overline{\nabla}(u_1 + u_2) = \overline{\nabla}u_1 + \overline{\nabla}u_2$;
- 4) $\overline{\nabla} (u_1 \times u_2) = u_2 \times \overline{\nabla} u_1 + u_1 \times \overline{\nabla} u_2$;

5)
$$\overline{\nabla} \left(\frac{u_1}{u_2} \right) = \frac{u_2 \overline{\nabla} u_1 - u_1 \overline{\nabla} u_2}{u_2^2}$$
;

6)
$$\nabla f(u) = f_u' \nabla u$$
.

Докажем некоторые из этих свойств:

3)
$$\overline{\nabla}(u_1 + u_2) = \frac{\partial(u_1 + u_2)}{\partial x}\overline{i} + \frac{\partial(u_1 + u_2)}{\partial y}\overline{j} + \frac{\partial(u_1 + u_2)}{\partial z}\overline{k} = \left(\frac{\partial u_1}{\partial x} + \frac{\partial u_2}{\partial x}\right)\overline{i} + \left(\frac{\partial u_1}{\partial y} + \frac{\partial u_2}{\partial y}\right)\overline{j} + \left(\frac{\partial u_1}{\partial z} + \frac{\partial u_2}{\partial z}\right)\overline{k} = \overline{\nabla}u_1 + \overline{\nabla}u_2;$$

6) по правилу дифференцирования сложной функции имеем: $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial u} \times \frac{\partial u}{\partial x}, \ \frac{\partial f}{\partial y} = \frac{\partial f}{\partial u} \times \frac{\partial u}{\partial y}, \ \frac{\partial f}{\partial z} = \frac{\partial f}{\partial u} \times \frac{\partial u}{\partial z} \Rightarrow \overline{\nabla} f\left(u\right) = \frac{\partial f}{\partial x} \overline{i} + \frac{\partial f}{\partial y} \overline{j} + \frac{\partial f}{\partial z} \overline{k} =$ $= \frac{\partial f}{\partial u} \left(\frac{\partial u}{\partial x} \overline{i} + \frac{\partial u}{\partial y} \overline{j} + \frac{\partial u}{\partial z} \overline{k}\right) = f'_u \times \overline{\nabla} u.$

5. Ротор (вихрь) и циркуляция векторного поля

Определение 26. Ротором (вихрем) векторного поля $\overline{F} = \{P,Q,R\}$ (обозначается $rot\ \overline{F}$) называется вектор, определяемый формулой $rot\ \overline{F} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right)\overline{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right)\overline{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\overline{k}$, где P = P(x,y,z), Q = Q(x,y,z), R = R(x,y,z) — непрерывные функции вместе со своими частными производными.

Формулу ротора можно записать в виде, удобном для запоминания, с помощью оператора Гамильтона как векторное произведение вектора $\bar{\nabla}$ на вектор \bar{F} :

$$rot \, \overline{F} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \overline{\nabla} \times \overline{F} \,. \tag{7}$$

Произведения символов $\frac{\partial}{\partial x}$, $\frac{\partial}{\partial y}$, $\frac{\partial}{\partial z}$ на функции P, Q, R следует понимать как соответствующие частные производные: $\frac{\partial}{\partial x} \times Q = \frac{\partial Q}{\partial x}$, $\frac{\partial}{\partial y} \times R = \frac{\partial R}{\partial y}$, $\frac{\partial}{\partial z} \times P = \frac{\partial P}{\partial z}$.

Определение 27. Поле вектора \overline{F} называется *потенциальным*, если вектор \overline{F} является градиентом некоторой скалярной функции u(x,y,z), т. е. $\overline{F}=\overline{grad}\ u$, а сама функция u- *потенциалом* этого поля.

Необходимым условием потенциальности векторного поля \overline{F} является равенство нулю ротора вектора $\overline{F}: rot \, \overline{F} = 0 \Rightarrow \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} = 0$, $\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} = 0 \, , \, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 0 \, .$

Если некоторая область Q изменения переменных (x,y,z) односвязная, то условие rot $\overline{F}=0$ является достаточным для потенциальности векторного поля. Область Q назовём односвязной, если любой принадлежащий ей замкнутый контур можно стянуть в точку этой области так, что во всех промежуточных положениях при стягивании контур будет оставаться в Q. Например, множество $Q=\left\{x^2+y^2+z^2< R^2\right\}$ — односвязной область, а множество $Q=\left\{4< x^2+y^2+z^2<25\right\}$ не является односвязной областью. Поэтому в односвязной области безвихревое поле потенциально.

Пример 29. Доказать, что поле вектора $\bar{F}\left\{xz^2,z^2,x^2z+2yz\right\}$ является потенциальным.

Т. к. векторное поле $\overline{F}\{xz^2,z^2,x^2z+2yz\}$ определено в любой точке (x,y,z), а значит, можно рассмотреть любую односвязную область. Вычислим $rot\ \overline{F}$ и убедимся, что он равен нулю в любой точке поля:

$$rot \, \overline{F} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ xz^2 & z^2 & x^2z + 2yz \end{vmatrix} =$$

$$= \overline{i} \left[\frac{\partial}{\partial y} \left(x^2z + 2yz \right) - \frac{\partial}{\partial z} \left(z^2 \right) \right] - \overline{j} \left[\frac{\partial}{\partial x} \left(x^2z + 2yz \right) - \frac{\partial}{\partial z} \left(xz^2 \right) \right] + \overline{k} \left[\frac{\partial}{\partial x} \left(z^2 \right) - \frac{\partial}{\partial y} \left(xz^2 \right) \right] =$$

$$= \overline{i} \left(2z - 2z \right) - \overline{j} \left(2xz - 2xz \right) - \overline{k} \left(0 - 0 \right) = 0 \implies rot \, \overline{F} (M) = 0.$$

Следовательно, векторное поле – потенциальное.

Определение 28. *Циркуляцией* вектора $\overline{F}\{P,Q,R\}$ по замкнутому, ориентированному контуру L называется криволинейный интеграл II типа $\Gamma_L = \prod_{r} P(x,y,z) dx + Q(x,y,z) dy + R(x,y,z) dz \, .$

Направление обхода контура считается положительным, если обход происходит против часовой стрелки.

Если поле вектора \overline{F} силовое, то циркуляция есть работа силы \overline{F} по перемещению материальной точки по замкнутому контуру L.

В потенциальном векторном поле циркуляция по любому гладкому или кусочно-гладкому замкнутому контуру равняется нулю.

Укажем более компактную запись формулы. Введём векторный символ дифференциала дуги: $\overline{dl} = \overline{\tau} \times dl = \overline{i} dx + \overline{j} dy + \overline{k} dz$, где $\overline{\tau}$ — единичный касательный вектор ориентированного замкнутого контура L, $dl = \sqrt{dx^2 + dy^2 + dz^2}$ — дифференциал дуги.

Тогда формула примет вид:
$$\Gamma_L = \iint_L P dx + Q dy + R dz = \iint_L \overline{F} \times \overline{dl}$$
 .

Используя свойства скалярного произведения, получим ещё одну формулу: $\Gamma_L = \!\!\!\!\!\!\int_L \!\! \left(\overline{F} \times \overline{\tau} \right) \! dl = \!\!\!\!\!\int_L \!\! \left(\operatorname{пp}_{\overline{\tau}} \overline{F} \right) \! dl \; .$

Пример 30. Вычислить циркуляцию векторного поля $\overline{F}\{-z-3x^2, y-2z, 2y-z\}$ вдоль линии пересечения плоскости (p)x+y+2z=4 с координатными плоскостями, направление положительное.

Решение. Составляем криволинейный интеграл по заданному контуру и разбиваем его на сумму трёх интегралов по отрезкам, составляющим этот контур (см. рис. 6): $\Gamma_L = \int_L \overline{F} \times \overline{dl} = \int_{AB} \overline{F} \times \overline{dl} + \int_{BC} \overline{F} \times \overline{dl} + \int_{CA} \overline{F} \times \overline{dl}$, где $\overline{F} \times \overline{dl} = \left(-z - 3x^2\right) dx + \left(y - 2z\right) dy + \left(2y - z\right) dz$; $AB: z = 0, x = t, y = 4 - t, dz = 0, dx = dt, dy = -dt, t_A = 4, t_B = 0$; $BC: x = 0, z = t, y = 4 - 2t, dx = 0, dz = dt, dy = -2dt, t_B = 0, t_C = 2$; $CA: y = 0, z = t, x = 4 - 2t, dy = 0, dz = dt, dx = -2dt, z_C = 2, z_A = 0$.

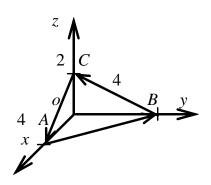


Рис. 6

Вычисляем циркуляцию, сводя криволинейные интегралы в определённые, по выбранному параметру: $\int_{AB} \overline{F} \times dl = \int_{4}^{0} \left[\left(-3t^{2} \right) dt + \left(4 - t \right) \left(-dt \right) \right] = \\ = \left[3 \frac{t^{3}}{3} + 4t - \frac{t^{2}}{2} \right]_{0}^{4} = 64 + 16 - 8 = 72 \; ; \int_{BC} \overline{F} \times dl = \int_{0}^{2} \left[\left(4 - 2t - 2t \right) \left(-2dt \right) + \right. \\ \left. + \left(8 - 4t - t \right) dt \right] = 3 \int_{0}^{2} t dt = 3 \frac{t^{2}}{2} \bigg|_{0}^{2} = 6 \; ; \int_{CA} \overline{F} \times dl = \int_{2}^{0} \left(-t - 3 \left(4 - 2t \right)^{2} \right) \left(-2dt \right) - t dt = \\ = \int_{2}^{0} t dt - 3 \int_{2}^{0} \left(4 - 2t \right)^{2} d \left(4 - 2t \right) = \frac{t^{2}}{2} - \left(4 - 2t \right)^{3} \bigg|_{2}^{0} = -2 - 64 = -66 \; . \\$ Тогда $\Gamma_{L} = 72 + 6 - 66 = 12 \; .$

Ответ: 12.

6. Поток векторного поля

Определение 29. Потоком вектора $\bar{F}\{P,Q,R\}$ через ориентированную поверхность σ называется поверхностный интеграл II типа

$$\Pi = \iint_{\sigma} P(x, y, z) dydz + Q(x, y, z) dxdz + R(x, y, z) dxdy.$$
 (8)

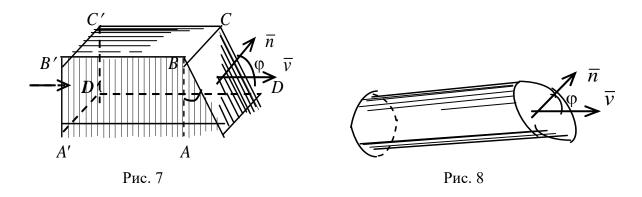
Выведем эту формулу, исходя из физического смысла введённого понятия. Рассмотрим частный случай стационарного поля, когда скорость течения жидкости во всех точках поля одна и та же $\overline{v}=$ const .

Количество жидкости Q, протекшее за единицу времени через прямоугольник A'B'C'D' со скоростью \overline{v} , равно произведению его площади $S_1 = S_{A'B'C'D'}$ на модуль скорости $|\overrightarrow{V}|$: $Q = S_1 \times |\overline{v}|$.

Величина Q постоянна в любом сечении, параллельном данному.

Очевидно, что это же количество жидкости протечёт и через площадку ABCD, составляющую угол ϕ с прямоугольником A'B'C'D'. Обозначим $S_1=S\cos\phi$, где S – площадь ABCD, тогда $Q=S\times\cos\phi\times\left|\overline{V}\right|=S_1\times\overline{V_n}$, где $\overline{V_n}$ – проекция скорости на нормаль \overline{n} .

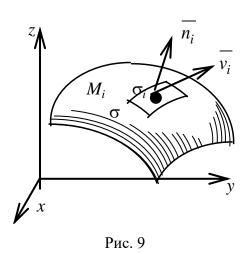
Формула будет верна для площадки любого вида, например, как на рис. 7.



Перейдём к общему случаю. Решим задачу о вычислении количества жидкости, протекшего через произвольную поверхность σ . Пусть в некоторой части пространства задано поле скоростей жидкости, т. е. в каждой

точке $M\left(x,y,z\right)$ этого пространства задан переменный вектор скорости $\overline{v}\left(M\right) = P\left(M\right)\overline{i} + Q\left(M\right)\overline{j} + R\left(M\right)\overline{k}$.

Возьмём гладкую ориентированную поверхность σ (рис. 9) и подситаем количество жидкости, протекающее через эту поверхность. Разобыём поверхность σ сетью произвольных кривых на n участков σ_i , в каждом из которых выберем произвольную точку M_i . Будем считать, что каждая площадка σ_i в силу её малости плоская и поток, проходящий через неё, — постоянный, именно такой, как в точке M_i в направлении нормали n_i , построенной в точке M_i .



Можно приближённо подсчитать количество жидкости, протекшее через поверхность σ по формуле, суммируя результаты по всем i=1,2,...,m:

$$Q \approx \sum_{i=1}^{m} \Delta \sigma_i \left| \overline{V_i} \right| \cos \varphi, \tag{9}$$

где $\Delta \sigma_i$ — площадь участка σ_i ; $\overline{v_i} = P(M_i)\overline{i} + Q(M_i)\overline{j} + R(M_i)\overline{k}$ — скорость поля в точке M_i ; ϕ_i — угол между нормалью $\overline{n_i}$ к поверхности σ_i , построенной в точке M_i и вектором скорости $\overline{v_i}$.

Преобразуем формулу (9), используя свойства скалярного произведения вектора \overline{v} на единичный вектор нормали $\overline{n} = \overline{i} \cos \alpha + \overline{j} \cos \beta + \overline{k} \cos \gamma$, $\left| \overline{n} \right| = 1 \colon Q \approx \sum_{i=1}^m \left(\overline{V_i}, \overline{n_i} \right) \sigma_i \implies Q \approx \sum_{i=1}^m \left(P_i \cos \alpha_i + Q_i \cos \beta_i + R_i \cos \gamma_i \right) \Delta \sigma_i \,.$

Перейдём к пределу при $\Delta \sigma_i \to 0$ (при этом $m \to \infty$):

$$Q = \lim_{\Delta \sigma_i \to 0} \sum_{i=1}^{m} (P_i \cos \alpha_i + Q_i \cos \beta_i + R_i \cos \gamma_i) \Delta \sigma_i.$$

Величина Q называется потоком жидкости через поверхность σ и выражается поверхностным интегралом $Q = \iint_{\sigma} (P(x,y,z)\cos\alpha + Q(x,y,z)\cos\beta + R(x,y,z)\cos\gamma) \, d\sigma = \iint_{\sigma} P dx dy + Q dx dz + R dx dy = \Pi$ или $\Pi = \iint_{\sigma} \overline{v} \times \overline{n} d\sigma = \iint_{\sigma} |\overline{v}| \cos\left(\overline{v},\overline{n}\right) d\sigma = \iint_{\sigma} (\Pi p_n \overline{v}) d\sigma$.

Таким образом, мы получили различные формулы для вычисления потока векторного поля с помощью поверхностных интегралов I и II типов.

Пример 31. Вычислить поток вектора $\bar{a} = \frac{1}{x} \bar{i} + \frac{1}{y} \bar{j} + \frac{1}{z} \bar{k}$ через пол-

ную поверхность эллипсоида $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ в сторону внешней нормали.

Воспользовавшись формулой (8), получим:

$$\Pi = \iint_{\sigma} \frac{dzdy}{x} + \frac{dxdz}{y} + \frac{dxdy}{z} = \iint_{\sigma} \left(\frac{\cos \alpha}{x} + \frac{\cos \beta}{y} + \frac{\cos \gamma}{z} \right) d\sigma.$$

Если поверхность задана уравнением F(x, y, z) = 0, то

$$\overline{N} = \left\{ \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z} \right\}.$$

Представим уравнение эллипсоида в виде $F(x, y, z) = \frac{x^2}{a^2} + \frac{x^2}{b^2} + \frac{x^2}{c^2} - 1 = 0$

и найдём частные производные функции F(x,y,z): $\frac{\partial F}{\partial x} = \frac{2x}{a^2}$, $\frac{\partial F}{\partial y} = \frac{2x}{b^2}$,

$$\frac{\partial F}{\partial z} = \frac{2x}{c^2}, \ \left| \overline{N} \right| = 2\sqrt{\frac{x^2}{a^4} + \frac{y^2}{b^4} + \frac{z^2}{c^4}}.$$

Вычислим направляющие косинусы нормали:

$$\cos\alpha = \frac{\frac{\partial F}{\partial x}}{\sqrt{\left(\frac{\partial F}{\partial x}\right)^2 + \left(\frac{\partial F}{\partial y}\right)^2 + \left(\frac{\partial F}{\partial z}\right)^2}} = \frac{x}{a^2} \times \frac{1}{\sqrt{\frac{x^2}{a^4} + \frac{y^2}{b^4} + \frac{z^2}{c^4}}},$$

$$\cos\beta = \frac{y}{b^2} \times \frac{1}{\sqrt{\frac{x^2}{a^4} + \frac{y^2}{b^4} + \frac{z^2}{c^4}}}, \qquad \cos\gamma = \frac{z}{c^2} \times \frac{1}{\sqrt{\frac{x^2}{a^4} + \frac{y^2}{b^4} + \frac{z^2}{c^4}}},$$
подставим их в исходную формулу: $\Pi = \left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}\right) \iint_{\sigma} \frac{d\sigma}{\sqrt{\frac{x^2}{a^4} + \frac{y^2}{b^4} + \frac{z^2}{c^4}}}.$

Чтобы перейти к двойному интегралу, необходимо выбрать координатную плоскость, на которую будем проектировать поверхность, пусть это будет XOY, тогда $d\sigma = \frac{dxdy}{\cos\gamma}$ и, соответственно,

$$\Pi = \left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}\right) \iint_{\sigma} \frac{dxdy}{\cos\gamma \times \sqrt{\frac{x^2}{a^4} + \frac{y^2}{b^4} + \frac{z^2}{c^4}}} = \left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}\right) \iint_{\sigma} \frac{dxdy}{\frac{z}{c^2}}.$$

 σ_1 : $z = +c\sqrt{1-\frac{x^2}{a^2}} - \frac{y^2}{b^2}$, с нормалью \overline{N}_1 , образующей острый угол

с осью OZ , $\cos\gamma \ge 0$; σ_2 : $z=-c\sqrt{1-\frac{x^2}{a^2}-\frac{y^2}{b^2}}$, с нормалью \overline{N}_2 , образующей тупой угол с осью OZ , $\cos\gamma \le 0$.

Таким образом, приходится рассматривать сумму потоков: Π_1 – через σ_1 , Π_2 – через σ_2 :

$$\begin{split} \Pi &= \Pi_1 + \Pi_2 = \left[\int \int_{\sigma_1} + \int \int_{\sigma_2} \right] = \\ &= c^2 \left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \right) \left[+ \int \int_{D_{xy}} \frac{dxdy}{+c\sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}}} - \int \int_{D_{xy}} \frac{dxdy}{-c\sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}}} \right] = \\ &= 2c \left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \right) \int \int_{D_{xy}} \frac{dxdy}{\sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}}} \cdot \end{split}$$

Вычисление двойного интеграла в полярных координатах осуществляется по формуле: $\iint_D f\left(r,\phi\right) d\phi dr = \int_{\alpha}^{\beta} d\phi \int_{r_1(\phi)}^{r_2(\phi)} F\left(r,\phi\right) dr \,, \ \alpha \leq \phi \leq \beta \,,$ $r_1(\phi) \leq r \leq r_2(\phi).$

Вычислим двойной интеграл в обобщённых полярных координатах: $x = a\rho\cos\phi$, $y = b\rho\sin\phi$, $|I| = ab\rho$, где I – это якобиан перехода из декар-

товой в обобщённую полярную систему координат: $I = \begin{vmatrix} \frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \phi} \end{vmatrix} = ab\rho$.

В обобщённой полярной системе координат уравнение эллипса $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ принимает вид } \rho^2 = 1 \text{ ; } \Pi = 2c \bigg(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \bigg) \int_0^{2\pi} d\phi \int_0^1 \frac{ab\rho d\rho}{\sqrt{1-\rho^2}} =$

$$= abc \left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \right) \times 2\pi \left| \frac{-\left(1 - \rho^2\right)^{\frac{1}{2}}}{\frac{1}{2}} \right|_0^1 = \frac{4\pi}{abc} \left(b^2 c^2 + a^2 c^2 + a^2 b^2 \right).$$

Упражнение 30. Вычислить поток векторного поля $\vec{a} = x\vec{i} + y\vec{j} + z\vec{k}$ через верхнюю сторону поверхности $z = 2 - x^2 - y^2$, отсечённой плоскостью z = 0.

Omвет: 2π [7].

Упражнение 31. Вычислить поток вектора $\vec{a} = (4x - 3y)\vec{i} + (2y - 6x)\vec{j} - y^2z^3\vec{k}$ через внутреннюю сторону боковой поверхности части цилиндра $z = x^2 + y^2$ и расположенной в первом октанте.

Omsem: $24(3-\pi)$ [7].

7. Дивергенция. Соленоидальное поле

Прежде чем перейти к понятию дивергенции, разберёмся, почему величина потока принимает положительное или отрицательное значение.

Пусть, например, по трубе течёт газ под давлением P_1 и внутрь трубы помещён шар с тем же газом под давлением $P_2 > P_1$. Окружим шар некоторой проницаемой поверхностью σ , и в шаре сделаем отверстие. Тогда часть газа из шара будет выходить в основной поток, а из объёма, ограниченного поверхностью σ , будет выходить газа больше, чем в него входить. Отверстие в шаре в этом случае будет источником, и поток через поверхность σ будет положителен. Если же наоборот: давление внутри шара $P_2 < P_1$, тогда часть газа из основного потока через отверстие будет входить в шар. В этом случае отверстие в шаре является стоком и поток газа через поверхность σ будет отрицательным.

Введём формулу Остроградского [4]. Если векторная функция $\vec{F} = \vec{F} (M) = P(x,y,z)\vec{i} + Q(x,y,z)\vec{j} + R(x,y,z)\vec{k}$ непрерывна в замкнутой области T с границей δ вместе со своими частными производными, то имеет место формула Остроградского:

$$\iiint_{T} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz = \iint_{\delta} \left(R \cos \alpha + Q \cos \beta + R \cos \gamma \right) ds.$$

Формула Остроградского перепишется: $\iint_{\sigma} F_n d\sigma = \iiint_T div \ \bar{F} \ dxdydz$. Если вектор \bar{F} — скорость течения жидкости, то формула обозначает поток (П) поля \bar{F} .

Если $\Pi > 0$, то говорят, что в объёме V, ограниченном поверхностью σ , имеются источники поля; если $\Pi < 0$, то в объёме V имеются стоки.

Установим численную характеристику плотности источников и стоков поля в любой его точке, т. е. дадим точное определение дивергенции. Зафиксируем в векторном поле \overline{F} произвольную точку M. Окружим её некоторой замкнутой гладкой поверхностью σ (например, сферой с центром в точке M). Вычислим поток поля через σ : $\Pi = \iint_{\sigma} \overline{F} \times \overline{d}\sigma$.

Пусть V означает объём, ограниченный σ , тогда отношение $\frac{\Pi}{V} = \frac{\iint_{\sigma} \overline{F} \times d\overline{\sigma}}{V}$ определяет среднюю плотность источников ($\Pi > 0$) или стоков (если $\Pi < 0$), распределённых в объёме V.

Определение 30. Предел отношения $\frac{\Pi}{V}$, когда поверхность σ стягивается в точку M, называют *дивергенцией* или *расходимостью* векторного поля в точке M.

Дивергенция обозначается $div \, \overline{F} \big(M \big) = \lim_{d(\sigma) \to 0} \frac{\iint_{\sigma} \overline{F} \times \overline{d\sigma}}{V}$, где $d \, \big(\sigma \big)$ – диаметр поверхности σ .

Замечания:

- в этом определении предполагается, что предел существует независимо от того, как поверхность σ стягивается в точку;
 - если $\operatorname{div} F(M) > 0$, то в точке M имеется источник;
 - если $\operatorname{div} F(M)$ < 0, то в точке M имеется сток;
 - дивергенция и есть плотность источников;
- если div F(M) = 0, то поле называется **соленоидальным** (или трубчатым), т. е. в этом поле отсутствуют источники и стоки, расход жидкости через любое сечение векторной трубки имеет одно и то же значение.

Пример 32. Вычислить дивергенцию поля радиус-вектора $\overline{r} = x\overline{i} + y\overline{j} + z\overline{k} \ .$

Ищем соответствующие частные производные от каждой координаты вектора: $r_x=x$, $r_y=y$, $r_z=z$, $\frac{\partial r_x}{\partial x}=1$, $\frac{\partial r_y}{\partial y}=1$, $\frac{\partial r_z}{\partial z}=1$, $div\, \overline{r}\, \big(M\big)=\frac{\partial r_x}{\partial x}+\frac{\partial r_y}{\partial y}+\frac{\partial r_z}{\partial z}=3$.

В каждой точке поля имеется источник плотности, равный 3 ед.

Пример 33. Найти поток электростатического поля точечного заряда q, помещённого в точке M через поверхность сферы радиуса R с центром в точке M.

Поле точечного заряда, как известно, задаётся вектором напряжённости $\overline{E}=\frac{q}{r^3}\overline{r}$, где \overline{r} – радиус-вектор, проведённый из точки, в которую помещён заряд. Выберем систему координат, начало которой поместим в центре сферы (см. рис. 10). Тогда $r=|\overline{r}|=\sqrt{x^2+y^2+z^2}$.

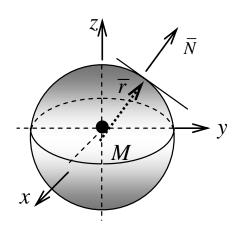


Рис. 10

Найдём
$$div\,ar{E}:\,ar{E}=q\Bigg(\Big(x^2+y^2+z^2\Big)^{\!\!-\!\!\frac{3}{2}}x\overline{i}+\Big(x^2+y^2+z^2\Big)^{\!\!-\!\!\frac{3}{2}}y\overline{j}+\Big(x^2+y^2+z^2\Big)^{\!\!-\!\!\frac{3}{2}}z\overline{k}\Bigg),$$

$$\frac{\partial}{\partial x}E_x=q\Bigg[\Big(x^2+y^2+z^2\Big)^{\!\!-\!\!\frac{3}{2}}-\frac{3}{2}\times2x^2\Big(x^2+y^2+z^2\Big)^{\!\!-\!\!\frac{5}{2}}\Bigg]=q\Big(r^{-3}-3x^2r^{-5}\Big),$$

$$\frac{\partial}{\partial y}E_y=q\Big(r^{-3}-3y^2r^{-5}\Big),\,\frac{\partial}{\partial z}E_z=q\Big(r^{-3}-3z^2r^{-5}\Big).$$

Складывая производные, получаем: $div \, \bar{E} = q \Big[3r^{-3} - 3r^{-5} \Big(x^2 + y^2 + z^2 \Big) \Big] =$ $= q \Big(3r^{-3} - 3r^{-3} \Big) = 0 \, .$

Таким образом, в любой точке поля, где определён вектор напряжённости \bar{E} , нет ни источников, ни стоков. Но в самой точке, где помещён заряд, r=0, вектор \bar{E} не определён, и для вычисления потока мы не можем воспользоваться формулой Остроградского.

Вычисляем поток вектора \overline{E} непосредственно с помощью поверхностного интеграла I типа $\Pi = \iint_{\sigma} \overline{E} \times \overline{n} d\sigma$, где σ — внешняя поверхность сферы.

В нашем случае (см. рис. 10) вектор $\overline{N} = \overline{r}$ (по определению: *норма-лью* называется вектор, проведённый в точке касания перпендикулярно касательной).

Обозначим единичный вектор нормали \overline{r}_0 . Тогда

$$\Pi = \iiint_{\sigma} \frac{q}{|\overline{r}|^3} (\overline{r} \times \overline{r_0}) d\sigma = \iiint_{\sigma} \frac{q d\sigma}{|\overline{r}|^2}.$$

Т. к. заряд находится в центре сферы, то длина радиус-вектора любой точки сферы будет равна радиусу сферы R, и тогда имеем

$$\Pi = \frac{q}{R^2} \iiint_{\sigma} d\sigma = \frac{q}{R^2} \times 4\pi R^2 = 4\pi q.$$

Как видим, поток точечного заряда не зависим от радиуса сферы.

Вывод: через любую сферу с центром в точечном заряде проходит одно и то же число векторных линий.

Упражнение 32. Дано векторное поле $\vec{a} = x\vec{i} + y\vec{j} + z\vec{k}$. Вычислить дивергенцию поля \vec{a} в точке M(-1,-2,1), проходящую через внешнюю сторону замкнутой поверхности S, состоящей из части параболоида $x^2 + y^2 = 3z$ и части сферы $x^2 + y^2 + z^2 = 4$, накрывающей параболоид.

Ответ: $div \, \vec{a} = 2z$, $div \, \overline{a_M} = 2$, т. е. в точке M есть источник, мощность которого равна 2 [7].

Упражнение 33. Проверить соленоидальность поля $\vec{F} = xy\vec{i} + yz\vec{j} - z\left(y + \frac{z}{2}\right)\vec{k}$.

Ответ: т. к. $div \vec{F} = 0$, то поле соленоидальное.

8. Формула Стокса. Ротор векторного поля

Связь поверхностных интегралов с криволинейными

Пусть поверхность σ ограничена замкнутой кривой L (см. рис. 11). И поверхность, и контур предполагаем гладкими или кусочно-гладкими. Ориентируем поверхность σ так, чтобы обход контура происходил против часовой стрелки, т. е. в положительном направлении. Правило согласования направления обхода контура L с направлением нормали n к поверхности: если ручку буравчика вращать по направлению обхода контура, то направление ввинчивания буравчика указывает направление нормали к поверхности.

Пусть функции P(x,y,z), Q(x,y,z), R(x,y,z) непрерывны на поверхности σ вместе со своими частными производными 1-го порядка.

При этих условиях имеет место формула Стокса, устанавливающая связь между криволинейным интегралом по замкнутому контуру L и интегралом по поверхности σ , ограниченной этим контуром (или, говорят, натянутой на контур),

$$\iint_{L} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz =$$

$$= \iint_{\sigma} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dz dy + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dz dx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy =$$

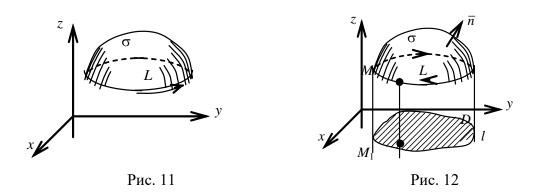
$$= \iint_{\sigma} \left[\left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) \cos \alpha + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \cos \beta + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \cos \gamma \right] d\sigma.$$

Приведём краткую запись этой формулы: $\iint_L \overline{F} \times dl = \iint_{\sigma} rot \ \overline{F} \times \overline{d\sigma} =$

$$= \iint_{\sigma} \begin{vmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} d\sigma.$$

Механический смысл формулы Стокса: циркуляция вектора \overline{F} по замкнутому контуру L равна потоку ротора вектора \overline{F} через произвольную поверхность σ , ограниченную этим контуром.

Доказательство формулы проведём для простейшего случая, когда прямые, параллельные координатным осям, пересекают гладкую поверхность σ не более чем в одной точке (см. рис. 12).



Пусть поверхность σ однозначно проектируется в область D плоскости XOY, а контур L, ограничивающий поверхность, проектируется, соответственно, в l – границу области D.

Рассмотрим одно из слагаемых формулы и докажем, например, равенство

$$\iint_{L} P(x, y, z) dx = \iint_{\sigma} \frac{\partial P}{\partial z} dz dx - \frac{\partial P}{\partial y} dx dy, \qquad (10)$$

где σ — поверхность, заданная уравнением z = f(x, y); L — граница этой поверхности (замкнутый контур ориентирован положительно).

Заменяя в левой части формулы (10) переменную z (поскольку контур L принадлежит поверхности), получаем криволинейный интеграл вида

$$\iint_{L} P(x, y, z) dx = \iint_{L} P[x, y, f(x, y)] dx = \iint_{L} \varphi(x, y) dx, \qquad (11)$$

где $\varphi(x,y) = P[x,y,f(x,y)], l$ – проекция контура L на плоскость xOy.

Формула (11) справедлива, поскольку точки $M(x,y,z) \subset L$ и $M_1(x,y,0) \subset l$ имеют равные координаты x,y (см. рис. 12). Применяя формулу Грина, получаем $\iint_L \phi(x,y) dx = -\iint_D \frac{\partial \phi}{\partial y} dx dy$. Переписываем формулу: $\iint_L P(x,y,z) dx = -\iint_D \frac{\partial \phi}{\partial y} dx dy$. Используем правило дифференцирования сложной функции: $\frac{\partial \phi}{\partial y} = \frac{\partial}{\partial y} P\big[x,y,f(x,y)\big] = \frac{\partial P}{\partial y} + \frac{\partial P}{\partial f(x,y)} \times \frac{\partial f(x,y)}{\partial y} = \frac{\partial P}{\partial y} + \frac{\partial P}{\partial y} \times \frac{\partial z}{\partial y}$.

Теперь заметим, что в нашей задаче поверхность σ задана уравнением z = f(x, y), запишем его в общем виде F(x, y, z) = 0, а именно: F(x, y, z) = f(x, y) - z.

Найдём вектор нормали $\bar{N} = \frac{\partial f}{\partial x}\bar{i} + \frac{\partial f}{\partial y}\bar{j} - \bar{k}$. Он коллинеарен единичному вектору $\bar{n} = \bar{i}\cos\alpha + \bar{j}\cos\beta + \bar{k}\cos\gamma$, поэтому их проекции про-

порциональны:
$$\frac{\partial f}{\partial y} = \frac{-1}{\cos \gamma}$$
.

Получаем
$$\frac{\partial z}{\partial y} \times \cos \gamma = -\cos \beta$$
.

Подставляем последнее равенство в окончательное, имеем:

$$\iint_{L} P(x, y, z) dx = \iint_{\sigma} \left(\frac{\partial P}{\partial z} \cos \beta - \frac{\partial P}{\partial y} \cos \gamma \right) d\sigma = \iint_{\sigma} \frac{\partial P}{\partial z} dx dz - \frac{\partial P}{\partial y} dx dy.$$

Аналогичным образом доказываются и следующие формулы:

$$\iint_{L} Q dy = \iint_{\sigma} \left(\frac{\partial Q}{\partial x} \cos \gamma - \frac{\partial Q}{\partial z} \cos \alpha \right) d\sigma = \iint_{\sigma} \frac{\partial Q}{\partial x} dx dy - \frac{\partial Q}{\partial z} dy dz ;$$

$$\iint_{L} R dz = \iint_{\sigma} \left(\frac{\partial R}{\partial y} \cos \alpha - \frac{\partial R}{\partial x} \cos \beta \right) d\sigma = \iint_{\sigma} \frac{\partial R}{\partial y} dy dz - \frac{\partial R}{\partial x} dx dz.$$

Складывая три равенства, получим формулу Стокса (в координатной форме):

$$\iint_{L} P dx + Q dy + R dz =$$

$$= \iint_{\sigma} \left[\left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) \cos \alpha + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \cos \beta + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \cos \gamma \right] d\sigma.$$

Заметим, что мы доказали формулу Стокса для простейшего случая, когда прямые, параллельные координатным осям, пересекают поверхность не более чем в одной точке. Формула справедлива и в более сложных ситуациях, когда поверхность требуется разбить на части, которые будем называть правильными, или простейшими. Соответственно, границей каждого

такого участка выбираем замкнутый контур, ориентированный в положительном направлении (сравните с применением формулы Грина).

Пример 34. Найти с помощью формулы Стокса циркуляцию векторного поля $\bar{a} = \{2yz, x^2 + 2y, xy\}$ вдоль контура треугольника, образованного пересечением плоскости (p): x + 3y + 2z - 6 = 0 с координатными плоскостями в положительном направлении (рис. 13).

Находим ротор (вихрь) вектора
$$\overline{a}$$
 (7): $rot \ \overline{a} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2yz & x^2 + 2y & xy \end{vmatrix}$.

Раскладываем определитель по элементам первой строки: $rot \ \overline{a} =$

$$= \overline{i} \left[\frac{\partial}{\partial y} (xy) - \frac{\partial}{\partial z} (x^2 + 2y) \right] - \overline{j} \left[\frac{\partial}{\partial x} (xy) - \frac{\partial}{\partial z} (2yz) \right] + \overline{k} \left[\frac{\partial}{\partial x} (x^2 + 2y) - \frac{\partial}{\partial y} (2yz) \right] =$$

$$= \overline{i} (x - 0) - \overline{j} (y - 2y) + \overline{k} (2x - 2z).$$

Выбираем любую поверхность, натянутую на контур треугольника ABC. Пусть это будет плоскость p (см. рис. 14), её уравнение задано. Согласно правилу ориентации нормаль к ней $\overline{N}\{1,3,2\}$ направлена вверх, т. е. образует острые углы с каждой из координатных осей.

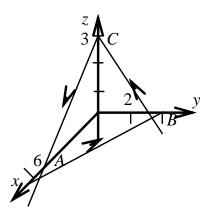


Рис. 13

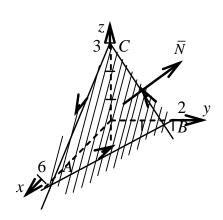


Рис. 14

Составляем формулу Стокса: $\Gamma = \iint_L 2yzdx + \left(x^2 + 2y\right)dy + xydz =$ $= \iint_{\sigma} xdydz + ydxdz + \left(2x - 2z\right)dxdy = \iint_{\sigma} \left(x\cos\alpha + y\cos\beta + \left(2x - 2z\right)\cos\gamma\right)d\sigma.$

Находим направляющие косинусы: $\overline{n} = \frac{\overline{N}}{\left|\overline{N}\right|}$, $\left|\overline{N}\right| = \sqrt{1^2 + 3^2 + 2^2} = \sqrt{14}$,

 $\cos \alpha = \frac{1}{\sqrt{14}}$, $\cos \beta = \frac{3}{\sqrt{14}}$, $\cos \gamma = \frac{2}{\sqrt{14}}$ и подставляем их в последний инте-

грал:
$$\Gamma = \iint_{\sigma} \left(\frac{x}{\sqrt{14}} + \frac{3y}{\sqrt{14}} + \frac{4x - 4z}{\sqrt{14}} \right) d\sigma.$$

Вычисляем интеграл, переведя его в двойной, например, по области D_{xz} (см. рис. 15), спроектировав p на плоскость XOZ .

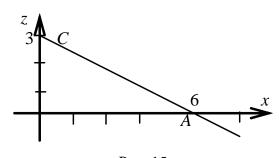


Рис. 15

Тогда $d\sigma = \frac{dxdz}{\cos\beta} = \frac{\sqrt{14}dxdz}{3}$, а в подынтегральной функции перемен-

ную y заменим, используя уравнение σ , т. е плоскости p, $y = \frac{6 - x - 2z}{3}$.

Получаем
$$\Gamma = + \iint_{D_{xz}} \frac{1}{\sqrt{14}} \left[x + 3 \left(\frac{6 - x - 2z}{3} \right) + 4x - 4z \right] \times \frac{\sqrt{14} dx dz}{3} =$$

$$= \frac{1}{3} \int_{0}^{3} dz \int_{0}^{6 - 2z} \left(6 - 6z + 4x \right) dx = \frac{1}{3} \int_{0}^{3} dz \left[6 (1 - z) x + 2x^{2} \right]_{0}^{2(3 - z)} =$$

$$= \frac{4}{3} \int_{0}^{3} \left[3 \left(3 + z^{2} - 4z \right) + 2 (3 - z)^{2} \right] dz = 4 \left[3z + \frac{z^{3}}{3} - 2z^{2} - \frac{2}{9} (3 - z)^{3} \right]_{0}^{3} = 24.$$

Упражнение 34. Тело вращается вокруг оси и имеет угловую скорость ω в данный момент времени t. Найти ротор (вихрь) поля скоростей \vec{v} точек тела в этот момент времени.

Ответ: $rot \ \vec{v} = (\omega - (-\omega))\vec{k} = 2\omega\vec{k} = 2\vec{\omega}$. В каждый момент времени t ротор поля скоростей \vec{v} точек твёрдого тела, вращающегося вокруг некоторой оси, равен удвоенному вектору угловой скорости тела [7].

ТАБЛИЦА ИНТЕГРАЛОВ

(a, b, m, n -постоянные)

І. Интегралы от рациональных функций

1.
$$\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)} + C$$
, где n – целое число, не равное 1.

2.
$$\int \frac{dx}{ax+b} = \frac{1}{a} \ln |ax+b| + C = \frac{1}{a} \ln C |ax+b|$$
.

3.
$$\int \frac{xdx}{ax+b} = \frac{1}{a^2} \left[ax - b \ln \left(ax + b \right) \right] + C.$$

4.
$$\int \frac{x^2 dx}{ax+b} = \frac{x^2}{2a} - \frac{bx}{a^2} + \frac{b^2}{a^3} \ln(ax+b) + C.$$

5.
$$\int \frac{dx}{x(ax+b)} = -\frac{1}{b} \ln \left| \frac{ax+b}{x} \right| + C.$$

6.
$$\int \frac{dx}{x^2(ax+b)} = -\frac{1}{bx} + \frac{a}{b^2} \ln \left| \frac{ax+b}{x} \right| + C$$
.

7.
$$\int \frac{xdx}{\left(ax+b\right)^2} = \frac{1}{a^2} \left(\ln\left|ax+b\right| + \frac{b}{ax+b} \right) + C.$$

8.
$$\int \frac{x^2 dx}{(ax+b)^2} = \frac{1}{a^3} \left[ax - 2b \ln|ax+b| - \frac{b^2}{ax+b} \right] + C.$$

9.
$$\int \frac{dx}{x(ax+b)^2} = \frac{1}{b(ax+b)} - \frac{1}{b^2} \ln \left| \frac{ax+b}{x} \right| + C.$$

10.
$$\int \frac{dx}{a^2 x^2 + b^2} = \frac{1}{ab} \arctan \frac{a}{b} x + C.$$

11.
$$\int \frac{dx}{a^2 x^2 - b^2} = \frac{1}{2ab} \ln \left| \frac{ax - b}{ax + b} \right| + C.$$

12.
$$\int \frac{xdx}{a^2x^2 \pm b^2} = \frac{1}{2a^2} \ln \left| a^2x^2 \pm b^2 \right| + C.$$

13.
$$\int \frac{x^2 dx}{a^2 x^2 + b^2} = \frac{1}{a^2} x - \frac{b}{a^3} \arctan \frac{a}{b} x + C.$$

14.
$$\int \frac{x^2 dx}{a^2 x^2 - b^2} = \frac{1}{a^2} x + \frac{b}{2a^3} \ln \left| \frac{ax - b}{ax + b} \right| + C.$$

15.
$$\int \frac{dx}{x(a^2x^2+b^2)} = \frac{1}{2b^2} \ln \frac{x^2}{a^2x^2+b^2} + C.$$

16.
$$\int \frac{dx}{x(a^2x^2 - b^2)} = \frac{1}{2b^2} \ln \left| \frac{a^2x^2 - b^2}{x^2} \right| + C.$$

17.
$$\int \frac{dx}{x^2 \left(a^2 x^2 + b^2\right)} = -\frac{1}{b^2 x} - \frac{a}{b^3} \arctan \frac{a}{b} x + C.$$

18.
$$\int \frac{dx}{x^2 \left(a^2 x^2 - b^2\right)} = \frac{1}{b^2 x} + \frac{a}{2b^3} \ln \left| \frac{ax - b}{ax + b} \right| + C.$$

II. Интегралы от иррациональных функций

19.
$$\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)} + C, \ n \neq -1.$$

20.
$$\int x\sqrt{ax+b}dx = \frac{2}{15a^2}(3ax-2b)\sqrt{(ax+b)^3} + C$$
.

21.
$$\int x^2 \sqrt{ax+b} dx = \frac{2}{105a^3} \left(15a^2 x^2 - 12abx + 8b^2 \right) \sqrt{\left(ax+b\right)^3} + C.$$

22.
$$\int \frac{x}{\sqrt{ax+b}} \, dx = \frac{2(ax-2b)}{3a^2} \sqrt{ax+b} + C.$$

23.
$$\int \frac{x^2}{\sqrt{ax+b}} dx = \frac{2}{15a^3} \left(3a^2x^2 - 4abx + 8b^2 \right) \sqrt{ax+b} + C.$$

24.
$$\int \frac{dx}{x\sqrt{ax+b}} \begin{cases} = \frac{1}{\sqrt{b}} \ln \frac{\sqrt{ax+b} - \sqrt{b}}{\sqrt{ax+b} + \sqrt{b}} + C, \ b > 0, \\ = \frac{2}{\sqrt{-b}} \arctan \sqrt{\frac{ax+b}{-b}} + C, \ b < 0. \end{cases}$$

25.
$$\int \frac{dx}{x^2 \sqrt{ax+b}} = -\frac{\sqrt{ax+b}}{bx} - \frac{a}{2b} \int \frac{dx}{x\sqrt{ax+b}}.$$

26.
$$\int \frac{\sqrt{ax+b}}{x} dx = 2\sqrt{ax+b} + b \int \frac{dx}{x\sqrt{ax+b}}.$$

$$27. \int \frac{\sqrt{ax+b}}{x^2} dx = -\frac{\sqrt{ax+b}}{x} + \frac{a}{2} \int \frac{dx}{x\sqrt{ax+b}}.$$

В формулах 28–47 считается, что a > 0, b > 0.

28.
$$\int \frac{dx}{\sqrt{a^2 x^2 + b^2}} = \frac{1}{a} \ln \left| ax + \sqrt{a^2 x^2 \pm b^2} \right| + C.$$

29.
$$\int \frac{dx}{\sqrt{b^2 - a^2 x^2}} = \frac{1}{a} \arcsin \frac{ax}{b} + C$$
.

$$30. \int \frac{xdx}{\sqrt{a^2x^2+b^2}} = \frac{1}{a^2} \sqrt{a^2x^2 \pm b^2} + C.$$

31.
$$\int \frac{xdx}{\sqrt{b^2 - a^2 x^2}} = -\frac{1}{a^2} \sqrt{b^2 - a^2 x^2} + C.$$

32.
$$\int \frac{x^2 dx}{\sqrt{a^2 x^2 + b^2}} = \frac{1}{2a^3} \left[ax \sqrt{a^2 x^2 \pm b^2} \mp b^2 \ln \left| ax + \sqrt{a^2 x^2 \pm b^2} \right| \right] + C.$$

33.
$$\int \frac{x^2 dx}{\sqrt{b^2 - a^2 x^2}} = \frac{1}{2a^3} \left[-ax\sqrt{b^2 - a^2 x^2} + b^2 \arcsin \frac{ax}{b} \right] + C.$$

34.
$$\int \sqrt{a^2 x^2 \pm b^2} dx = \frac{1}{2} \left[x \sqrt{a^2 x^2 \pm b^2} \pm \frac{b^2}{a} \ln \left| ax + \sqrt{a^2 x^2 \pm b^2} \right| \right] + C.$$

35.
$$\int \sqrt{b^2 - a^2 x^2} dx = \frac{1}{2} \left[x \sqrt{b^2 - a^2 x^2} + \frac{b^2}{a} \arcsin \frac{ax}{b} \right] + C.$$

36.
$$\int x\sqrt{a^2x^2 \pm b^2} dx = \frac{1}{3a^2} \sqrt{\left(a^2x^2 \pm b^2\right)^3} + C.$$

37.
$$\int x\sqrt{b^2 - a^2x^2} dx = -\frac{1}{3a^2} \sqrt{\left(b^2 - a^2x^2\right)^3} + C.$$

$$38. \int x^2 \sqrt{a^2 x^2 \pm b^2} \, dx =$$

$$= \frac{1}{8a^3} \left[ax \left(2a^2 x^2 \pm b^2 \right) \sqrt{a^2 x^2 \pm b^2} - b^4 \ln \left| ax + \sqrt{a^2 x^2 \pm b^2} \right| \right] + C.$$

39.
$$\int x^2 \sqrt{b^2 - a^2 x^2} dx = \frac{1}{8a^3} \left[ax \left(2a^2 x^2 - b^2 \right) \sqrt{b^2 - a^2 x^2} + b^4 \arcsin \frac{ax}{b} \right] + C.$$

40.
$$\int \frac{\sqrt{a^2x^2 + b^2}}{x} dx = \sqrt{a^2x^2 + b^2} + \frac{b}{2} \ln \frac{\sqrt{a^2x^2 + b^2} - b}{\sqrt{a^2x^2 + b^2} + b} + C.$$

Примечание. Правой части можно придать вид на основании

тождества
$$\frac{\sqrt{a^2x^2+b^2}-b}{\sqrt{a^2x^2+b^2}+b} = \left(\frac{ax}{\sqrt{a^2x^2+b^2}+b}\right)^2 = \left(\frac{\sqrt{a^2x^2+b^2}-b}{ax}\right)^2,$$

T. e.
$$\int \frac{\sqrt{a^2 x^2 - b^2}}{x} dx = \sqrt{a^2 x^2 - b^2} + b \arcsin \left| \frac{b}{ax} \right| + C$$
.

41.
$$\int \frac{\sqrt{b^2 - a^2 x^2}}{x} dx = \sqrt{b^2 - a^2 x^2} - b \ln \left| \frac{b - \sqrt{b^2 - a^2 x^2}}{x} \right| + C.$$

42.
$$\int \frac{\sqrt{a^2 x^2 \pm b^2}}{x^2} dx = -\frac{\sqrt{a^2 x^2 \pm b^2}}{x} + a \ln \left| ax + \sqrt{a^2 x^2 \pm b^2} \right| + C.$$

43.
$$\int \frac{\sqrt{b^2 - a^2 x^2}}{x^2} dx = -\frac{\sqrt{b^2 - a^2 x^2}}{x} - a \arcsin \frac{ax}{b} + C.$$

44.
$$\int \frac{dx}{x\sqrt{a^2x^2 + b^2}} = \frac{1}{b} \ln \left| \frac{x}{b + \sqrt{a^2x^2 + b^2}} \right| + C$$

или
$$\int \frac{dx}{x\sqrt{a^2x^2-b^2}} = -\frac{1}{b}\arcsin\left|\frac{b}{ax}\right| + C$$
.

45.
$$\int \frac{dx}{x\sqrt{b^2 - a^2 x^2}} = \frac{1}{b} \ln \left| \frac{x}{b + \sqrt{b^2 - a^2 x^2}} \right| + C.$$

46.
$$\int \frac{dx}{x^2 \sqrt{a^2 x^2 + b^2}} = \mp \frac{\sqrt{a^2 x^2 \pm b^2}}{b^2 x} + C.$$

47.
$$\int \frac{dx}{x^2 \sqrt{b^2 - a^2 x^2}} = -\frac{\sqrt{b^2 - a^2 x^2}}{b^2 x} + C.$$

48.
$$\int \sqrt{\frac{a+x}{b+x}} dx = \sqrt{(a+x)(b+x)} + (a-b)\ln\left(\sqrt{a+x} + \sqrt{b+x}\right) + C.$$

49.
$$\int \sqrt{\frac{a-x}{b+x}} dx = \sqrt{(a-x)(b+x)} + (a+b) \arcsin \sqrt{\frac{x+b}{a+b}} + C.$$

50.
$$\int \sqrt{\frac{a+x}{b-x}} dx = -\sqrt{(a+b)(b-x)} - (a+b) \arcsin \sqrt{\frac{b-x}{a+b}} + C.$$

51.
$$\int \sqrt{\frac{1+x}{1-x}} dx = -\sqrt{1-x^2} + \arcsin x + C.$$

52.
$$\int \frac{dx}{\sqrt{(x-a)(x-b)}} = \ln \left| \frac{\sqrt{x-a} + \sqrt{x-b}}{\sqrt{x-a} - \sqrt{x-b}} \right| + C.$$

53.
$$\int \frac{dx}{\sqrt{(x-a)(b-x)}} = 2\arcsin\sqrt{\frac{x-a}{b-a}} + C.$$

54. $\int \operatorname{ch} x dx = \operatorname{sh} x + C$, где m, n, r, s — целые числа, s > 1. Применяется подстановка $ax^n + b = u^s$, если $\frac{m+1}{n}$ — число целое, и подстановка $a + bx^{-n} = u^s$, если $\frac{m+1}{n} + \frac{r}{s}$ — число целое. В других случаях интеграл не выражается элементарной функцией.

III. Интегралы от трансцендентных функций

55.
$$\int x^n e^x dx = e^x \left[x^n - nx^{n-1} + n(n-1)x^{n-2} - \dots + (-1)^n n! \right] + C,$$

n — целое положительное число.

56.
$$\int (\ln x)^n dx = x \Big[(\ln x)^n - n(\ln x)^{n-1} + n(n-1)(\ln x)^{n-2} - \dots + (-1)^n n! \Big] + C,$$

n — целое положительное число.

57.
$$\int e^{ax} \sin nx dx = \frac{e^{ax} \left(a \sin nx - n \cos nx \right)}{a^2 + n^2} + C.$$

58.
$$\int \frac{(\ln x)^n}{x} dx = \frac{(\ln x)^{n+1}}{n+1} + C, \ n \neq -1.$$

$$59. \int \frac{dx}{x \ln x} = \ln \left| \ln x \right| + C.$$

$$60. \int \sin nx dx = -\frac{\cos nx}{n} + C.$$

$$61. \int \cos nx dx = \frac{\sin nx}{n} + C.$$

62.
$$\int \sin mx \cos nx dx = -\frac{\cos(m+n)x}{2(m+n)} - \frac{\cos(m-n)x}{2(m-n)} + C, \ m \neq n.$$

63.
$$\int \sin mx \sin nx dx = \frac{\sin (m-n)x}{2(m-n)} - \frac{\sin (m+n)x}{2(m+n)} + C, \ m \neq n.$$

64.
$$\int \cos mx \cos nx dx = \frac{\sin(m-n)x}{2(m-n)} + \frac{\sin(m+n)x}{2(m+n)} + C, \ m \neq n.$$

65.
$$\int \sin x \cos x dx = \frac{1}{2} \sin^2 x + C = -\frac{1}{2} \cos^2 x + C.$$

66.
$$\int \sin^2 x dx = \frac{1}{2}x - \frac{1}{4}\sin 2x + C.$$

67.
$$\int \cos^2 x dx = \frac{1}{2}x + \frac{1}{4}\sin 2x + C.$$

68.
$$\int \frac{dx}{\sin x} = \ln \left| \tan \frac{x}{2} \right| + C.$$

69.
$$\int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{\pi}{4} + \frac{x}{2} \right) \right| + C.$$

70.
$$\int \sin^{m} \cos^{n} x dx \begin{cases} = -\frac{\sin^{m-1} x \cos^{n+1} x}{m+n} + \frac{m-1}{m+n} \int \sin^{m-2} x \cos^{n} x dx, & m \neq -n, \\ = \frac{\sin^{m+1} x \cos^{n-1} x}{m+n} + \frac{n-1}{m+n} \int \sin^{m} x \cos^{n-2} x dx, & m \neq -n. \end{cases}$$

71.
$$\int \frac{dx}{\sin^{m} x \cos^{n} x} \begin{cases} = -\frac{1}{m-1} \frac{1}{\sin^{m-1} x \cos^{n-1} x} + \frac{m+n-2}{m-1} \int \frac{dx}{\sin^{m-2} x \cos^{n} x}, m \neq 1, \\ = \frac{1}{n-1} \frac{1}{\sin^{m-1} x \cos^{n-1} x} + \frac{m+n-2}{n-1} \int \frac{dx}{\sin^{m} x \cos^{n-2} x}, n \neq 1. \end{cases}$$

72.
$$\int \tan^n x dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x dx, \ n \neq 1.$$

73.
$$\int \cot^n x dx = -\frac{\cot^{n-1} x}{n-1} - \int \cot^{n-2} x dx, \ n \neq 1.$$

74.
$$\int x^n \sin x dx = -x^n \cos x + n \int x^{n-1} \cos x dx.$$

75.
$$\int x^n \cos x dx = x^n \sin x - n \int x^{n-1} \sin x dx.$$

$$76. \int \frac{dx}{a+b\cos x} = \frac{2}{\sqrt{a^2 - b^2}} \arctan\left(\sqrt{\frac{a-b}{a+b}}\tan\frac{x}{2}\right) + C, \ a^2 > b^2,$$

$$\left[= \frac{1}{\sqrt{b^2 - a^2}} \ln\left|\frac{\sqrt{b^2 - a^2}\tan\frac{x}{2} + a + b}{\sqrt{b^2 - a^2}\tan\frac{x}{2} - a - b}\right| + C, \ a^2 < b^2.$$

$$77. \int \frac{dx}{a+b\sin x} = \frac{2}{\sqrt{a^2 - b^2}} \arctan \frac{a\tan \frac{x}{2} + b}{\sqrt{a^2 - b^2}} + C, \ a^2 > b^2,$$

$$= \frac{1}{\sqrt{b^2 - a^2}} \ln \left| \frac{a\tan \frac{x}{2} + b - \sqrt{b^2 - a^2}}{a\tan \frac{x}{2} + b + \sqrt{b^2 - a^2}} \right| + C, \ a^2 < b^2.$$

78.
$$\int \frac{dx}{a\cos x + b\sin x} = \frac{1}{\sqrt{a^2 + b^2}} \ln \left| \frac{a\tan\frac{x}{2} - b + \sqrt{a^2 + b^2}}{a\tan\frac{x}{2} - b - \sqrt{a^2 + b^2}} \right|.$$

B частности,
$$\int \frac{dx}{\cos x + \sin x} = \frac{1}{\sqrt{2}} \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{8} \right) \right|.$$

79.
$$\int \frac{dx}{a^2 \sin^2 x + b^2 \cos^2 x} = \frac{1}{ab} \arctan\left(\frac{a \tan x}{b}\right) + C.$$

80.
$$\int e^{ax} \sin nx dx = \frac{e^{ax} \left(a \sin nx - n \cos nx \right)}{a^2 + n^2} + C.$$

81.
$$\int e^{ax} \cos nx dx = \frac{e^{ax} \left(n \sin nx + a \cos nx \right)}{a^2 + n^2} + C.$$

82.
$$\int e^{ax} \sin^n x dx = \frac{e^{ax} \sin^{n-1} x (a \sin x - n \cos x)}{a^2 + n^2} + \frac{n(n-1)}{a^2 + n^2} \int e^{ax} \sin^{n-2} x dx.$$

83.
$$\int e^{ax} \cos^n x dx = \frac{e^{ax} \cos^{n-1} x (a \cos x + n \sin x)}{a^2 + n^2} + \frac{n(n-1)}{a^2 + n^2} \int e^{ax} \cos^{n-2} x dx.$$

84.
$$\int \arcsin x dx = x \arcsin x + \sqrt{1 - x^2} + C.$$

85.
$$\int \arccos x dx = x \arccos x - \sqrt{1 - x^2} + C.$$

86.
$$\int \arctan x dx = x \arctan x - \frac{1}{2} \ln \left(1 + x^2 \right) + C.$$

87.
$$\int x \arcsin x dx = \left(\frac{x^2}{2} - \frac{1}{4}\right) \arcsin x + \frac{x\sqrt{1 - x^2}}{4}.$$

88.
$$\int x \arccos x dx = \left(\frac{x^2}{2} - \frac{1}{4}\right) \arccos x - \frac{x\sqrt{1 - x^2}}{4}.$$

89.
$$\int x \arctan x dx = \frac{1}{2} \left(x^2 + 1 \right) \arctan x - \frac{x}{2}.$$

$$90. \int \mathrm{sh} x dx = \mathrm{ch} x + C.$$

91.
$$\int chx dx = shx + C.$$

92.
$$\int thx dx = \ln chx + C.$$

93.
$$\int \sinh^2 x dx = -\frac{1}{2}x + \frac{1}{4}\sinh 2x + C.$$

94.
$$\int \cosh^2 x dx = \frac{1}{2}x + \frac{1}{4}\cosh 2x + C.$$

СПИСОК ЛИТЕРАТУРЫ

- 1. Асташова И. В. Дифференциальные уравнения: курс лекций / И. В. Асташова. М.: Физфак МГУ, 2012.
- 2. Ахтамова С. С. Введение в математический анализ / С. С. Ахтамова. Красноярск: СФУ, 2020. 125 с.
- 3. Берман Г. Н. Сборник задач по курсу математического анализа / Г. Н. Берман. М.: Наука, 1977.
- 4. Бутузов В. Ф. Математический анализ. Ч. 3: Скалярные и векторные поля / В. Ф. Бутузов. М.: Физфак МГУ, 2015.
- 5. Данко П. Е. Высшая математика в упражнениях и задачах: учеб. пособие. Ч. 2 / П. Е. Данко, А. Г. Попов, Т. Я. Кожевникова. 4-е изд. М.: Высшая школа, 1986. 415 с.
- 6. Демидович Б. П. Сборник задач и упражнений по математическому анализу / Б. П. Демидович. М.: Наука, 1977. 528 с.
- 7. Дорохов В. М. Решение задач по векторному анализу и теории поля / В. М. Дорохов. М., 2015.
- 8. Матвеев Н. М. Сборник задач и упражнений по обыкновенным дифференциальным уравнениям: учеб. пособие / Н. М. Матвеев. СПб.: Лань, 2002. 432 с.
- 9. Мышкис А. Д. Лекции по высшей математике / А. Д. Мышкис. М.: Наука, 1969.
- 10. Понтрягин Л. С. Обыкновенные дифференциальные уравнения / Л. С. Понтрягин. М.: Наука, 1974.
- 11. Пискунов Н. С. Дифференциальное и интегральное исчисления для втузов / Н. С. Пискунов. М.: Наука, 1970.
- 12. Фролов С. В. Курс высшей математики: учеб. пособие / С. В. Фролов, Р. Я. Шостак. М.: Высшая школа, 1973. 400 с.
- 13. Филиппов А. Ф. Сборник задач по дифференциальным уравнениям / А. Ф. Филиппов. М.: Наука, 1985. 126 с.

- 14. Шнейдер В. В. Краткий курс высшей математики / В. В. Шнейдер. М.: Наука, 1978.
- 15. Шипачев В. С. Задачник по высшей математике / В. С. Шипачев. М.: Высшая школа, 2001. 304 с.
- 16. Ахтамова С. С. Теория функций комплексного переменного / С. С. Ахтамова, Е. К. Лейнартас, А. П. Ляпин. Красноярск: СФУ, 2020. 98 с.
- 17. Ахтамова С. С. Математический анализ. Теория функций многих переменных / С. С. Ахтамова, Е. К. Лейнартас, А. П. Ляпин. Красноярск: СФУ, 2021. 60 с.
- 18. Лейнартас Е. К. Математический анализ. Интегралы: учеб.-метод. пособие / Е. К. Лейнартас, А. П. Ляпин, Е. Н. Михалкин. Красноярск: СФУ, 2021. 44 с.

Учебное издание

МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. ЧАСТЬ 1

Учебно-методическое пособие

Составители **Ляпин** Александр Петрович **Ахтамова** Светлана Станиславовна

Корректор Л. В. Боос Компьютерная вёрстка И. В. Владимировой

Подписано в печать 06.05.2024. Печать плоская. Формат $60\times84/16$ Бумага офсетная. Усл. печ. л. 7,0. Тираж 100 экз. Заказ № 21 468

Библиотечно-издательский комплекс Сибирского федерального университета 660041, Красноярск, пр. Свободный, 82а Тел.: (391) 206-26-16; http://bik.sfu-kras.ru E-mail: publishing_house@sfu-kras.ru

Для заметок

Для заметок